Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 The Google Research Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
r"""Config for unsupervised training on Waymo Open.""" | |
import ml_collections | |
def get_config(): | |
"""Get the default hyperparameter configuration.""" | |
config = ml_collections.ConfigDict() | |
config.seed = 42 | |
config.seed_data = True | |
config.batch_size = 64 | |
config.num_train_steps = 500000 # from the original Slot Attention | |
config.init_checkpoint = ml_collections.ConfigDict() | |
config.init_checkpoint.xid = 0 # Disabled by default. | |
config.init_checkpoint.wid = 1 | |
config.optimizer_configs = ml_collections.ConfigDict() | |
config.optimizer_configs.optimizer = "adam" | |
config.optimizer_configs.grad_clip = ml_collections.ConfigDict() | |
config.optimizer_configs.grad_clip.clip_method = "clip_by_global_norm" | |
config.optimizer_configs.grad_clip.clip_value = 0.05 | |
config.lr_configs = ml_collections.ConfigDict() | |
config.lr_configs.learning_rate_schedule = "compound" | |
config.lr_configs.factors = "constant * cosine_decay * linear_warmup" | |
config.lr_configs.warmup_steps = 10000 # from the original Slot Attention | |
config.lr_configs.steps_per_cycle = config.get_ref("num_train_steps") | |
# from the original Slot Attention | |
config.lr_configs.base_learning_rate = 4e-4 | |
config.eval_pad_last_batch = False # True | |
config.log_loss_every_steps = 50 | |
config.eval_every_steps = 5000 | |
config.checkpoint_every_steps = 5000 | |
config.train_metrics_spec = { | |
"loss": "loss", | |
"ari": "ari", | |
"ari_nobg": "ari_nobg", | |
} | |
config.eval_metrics_spec = { | |
"eval_loss": "loss", | |
"eval_ari": "ari", | |
"eval_ari_nobg": "ari_nobg", | |
} | |
config.data = ml_collections.ConfigDict({ | |
"dataset_name": "waymo_open", | |
"shuffle_buffer_size": config.batch_size * 8, | |
"resolution": (128, 192) | |
}) | |
config.max_instances = 11 | |
config.num_slots = config.max_instances # Only used for metrics. | |
config.logging_min_n_colors = config.max_instances | |
config.preproc_train = [ | |
"tfds_image_to_tfds_video", | |
"video_from_tfds", | |
] | |
config.preproc_eval = [ | |
"tfds_image_to_tfds_video", | |
"video_from_tfds", | |
"delete_small_masks(threshold=0.01, max_instances_after=11)", | |
] | |
config.eval_slice_size = 1 | |
config.eval_slice_keys = ["video", "segmentations_video"] | |
# Dictionary of targets and corresponding channels. Losses need to match. | |
targets = {"video": 3} | |
config.losses = {"recon": {"targets": list(targets)}} | |
config.losses = ml_collections.ConfigDict({ | |
f"recon_{target}": {"loss_type": "recon", "key": target} | |
for target in targets}) | |
config.model = ml_collections.ConfigDict({ | |
"module": "invariant_slot_attention.modules.SAVi", | |
# Encoder. | |
"encoder": ml_collections.ConfigDict({ | |
"module": "invariant_slot_attention.modules.FrameEncoder", | |
"reduction": "spatial_flatten", | |
"backbone": ml_collections.ConfigDict({ | |
"module": "invariant_slot_attention.modules.ResNet34", | |
"num_classes": None, | |
"axis_name": "time", | |
"norm_type": "group", | |
"small_inputs": True | |
}), | |
"pos_emb": ml_collections.ConfigDict({ | |
"module": "invariant_slot_attention.modules.PositionEmbedding", | |
"embedding_type": "linear", | |
"update_type": "project_add", | |
"output_transform": ml_collections.ConfigDict({ | |
"module": "invariant_slot_attention.modules.MLP", | |
"hidden_size": 128, | |
"layernorm": "pre" | |
}), | |
}), | |
}), | |
# Corrector. | |
"corrector": ml_collections.ConfigDict({ | |
"module": "invariant_slot_attention.modules.SlotAttentionTranslScaleEquiv", # pylint: disable=line-too-long | |
"num_iterations": 3, | |
"qkv_size": 64, | |
"mlp_size": 128, | |
"grid_encoder": ml_collections.ConfigDict({ | |
"module": "invariant_slot_attention.modules.MLP", | |
"hidden_size": 128, | |
"layernorm": "pre" | |
}), | |
"add_rel_pos_to_values": True, # V3 | |
"zero_position_init": False, # Random positions. | |
"init_with_fixed_scale": None, # Random scales. | |
"scales_factor": 5.0, | |
}), | |
# Predictor. | |
# Removed since we are running a single frame. | |
"predictor": ml_collections.ConfigDict({ | |
"module": "invariant_slot_attention.modules.Identity" | |
}), | |
# Initializer. | |
"initializer": ml_collections.ConfigDict({ | |
"module": "invariant_slot_attention.modules.ParamStateInitRandomPositionsScales", # pylint: disable=line-too-long | |
"shape": (11, 64), # (num_slots, slot_size) | |
}), | |
# Decoder. | |
"decoder": ml_collections.ConfigDict({ | |
"module": | |
"invariant_slot_attention.modules.SiameseSpatialBroadcastDecoder", | |
"resolution": (16, 24), # Update if data resolution or strides change | |
"backbone": ml_collections.ConfigDict({ | |
"module": "invariant_slot_attention.modules.CNN", | |
"features": [64, 64, 64, 64, 64], | |
"kernel_size": [(5, 5), (5, 5), (5, 5), (5, 5), (5, 5)], | |
"strides": [(2, 2), (2, 2), (2, 2), (1, 1), (1, 1)], | |
"max_pool_strides": [(1, 1), (1, 1), (1, 1), (1, 1), (1, 1)], | |
"layer_transpose": [True, True, True, False, False] | |
}), | |
"target_readout": ml_collections.ConfigDict({ | |
"module": "invariant_slot_attention.modules.Readout", | |
"keys": list(targets), | |
"readout_modules": [ml_collections.ConfigDict({ # pylint: disable=g-complex-comprehension | |
"module": "invariant_slot_attention.modules.MLP", | |
"num_hidden_layers": 0, | |
"hidden_size": 0, | |
"output_size": targets[k]}) for k in targets], | |
}), | |
"relative_positions_and_scales": True, | |
"pos_emb": ml_collections.ConfigDict({ | |
"module": | |
"invariant_slot_attention.modules.RelativePositionEmbedding", | |
"embedding_type": | |
"linear", | |
"update_type": | |
"project_add", | |
"scales_factor": | |
5.0, | |
}), | |
}), | |
"decode_corrected": True, | |
"decode_predicted": False, | |
}) | |
# Which video-shaped variables to visualize. | |
config.debug_var_video_paths = { | |
"recon_masks": "decoder/alphas_softmaxed/__call__/0", # pylint: disable=line-too-long | |
} | |
# Define which attention matrices to log/visualize. | |
config.debug_var_attn_paths = { | |
"corrector_attn": "corrector/InvertedDotProductAttentionKeyPerQuery_0/attn" # pylint: disable=line-too-long | |
} | |
# Widths of attention matrices (for reshaping to image grid). | |
config.debug_var_attn_widths = { | |
"corrector_attn": 16, | |
} | |
return config | |