Spaces:
Runtime error
Runtime error
File size: 8,239 Bytes
a560c26 1e7763d a560c26 65d6890 1e7763d a560c26 1e7763d a560c26 9d5d768 a560c26 9d5d768 65d6890 a560c26 65d6890 a560c26 8530ae8 a560c26 65d6890 a560c26 8530ae8 a560c26 8530ae8 9d5d768 1e7763d 9d5d768 8530ae8 9d5d768 1e7763d 9d5d768 f1a8131 1e7763d f1a8131 9fbcce5 f1a8131 1e7763d f1a8131 1e7763d 9b6ff29 9d5d768 9b6ff29 9d5d768 9fbcce5 9b6ff29 c57a3a8 9b6ff29 9d5d768 9fbcce5 9d5d768 f1a8131 9d5d768 1e7763d 9d5d768 1e7763d 9b6ff29 1e7763d 9d5d768 9b6ff29 9fbcce5 9d5d768 9fbcce5 9d5d768 1e7763d 9d5d768 1e7763d 9d5d768 1e7763d 9d5d768 1e7763d f1a8131 1e7763d f1a8131 1e7763d f1a8131 1e7763d f1a8131 1e7763d 9d5d768 1e7763d 9d5d768 1e7763d 9d5d768 1e7763d 9d5d768 1e7763d 9d5d768 9fbcce5 9d5d768 9fbcce5 1e7763d 9d5d768 1e7763d 9d5d768 1e7763d 9d5d768 1e7763d 9d5d768 f1a8131 9d5d768 9fbcce5 1e7763d 9d5d768 a560c26 9fbcce5 f1a8131 9fbcce5 f1a8131 9fbcce5 f1a8131 a560c26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import os
from typing import Callable
from clu import checkpoint
from flax import linen as nn
import gradio as gr
from huggingface_hub import snapshot_download
import jax
import jax.numpy as jnp
import numpy as np
from PIL import Image
from invariant_slot_attention.configs.clevr_with_masks.equiv_transl_scale import get_config
from invariant_slot_attention.lib import utils
def load_model(config, checkpoint_dir):
rng = jax.random.PRNGKey(42)
# Initialize model
model = utils.build_model_from_config(config.model)
def init_model(rng):
rng, init_rng, model_rng, dropout_rng = jax.random.split(rng, num=4)
init_conditioning = None
init_inputs = jnp.ones([1, 1, 128, 128, 3], jnp.float32)
initial_vars = model.init(
{"params": model_rng, "state_init": init_rng, "dropout": dropout_rng},
video=init_inputs, conditioning=init_conditioning,
padding_mask=jnp.ones(init_inputs.shape[:-1], jnp.int32))
# Split into state variables (e.g. for batchnorm stats) and model params.
# Note that `pop()` on a FrozenDict performs a deep copy.
state_vars, initial_params = initial_vars.pop("params") # pytype: disable=attribute-error
# Filter out intermediates (we don't want to store these in the TrainState).
state_vars = utils.filter_key_from_frozen_dict(
state_vars, key="intermediates")
return state_vars, initial_params
state_vars, initial_params = init_model(rng)
opt_state = None
state = utils.TrainState(
step=1, opt_state=opt_state, params=initial_params, rng=rng,
variables=state_vars)
ckpt = checkpoint.Checkpoint(checkpoint_dir)
state = ckpt.restore(state, checkpoint=checkpoint_dir + "/ckpt-0")
return model, state, rng
def load_image(name):
img = Image.open(f"images/{name}.png")
img = img.crop((64, 29, 64 + 192, 29 + 192))
img = img.resize((128, 128))
img = np.array(img)[:, :, :3] / 255.
img = jnp.array(img, dtype=jnp.float32)
return img
download_path = snapshot_download(repo_id="ondrejbiza/isa")
checkpoint_dir = os.path.join(download_path, "clevr_isa_ts")
model, state, rng = load_model(get_config(), checkpoint_dir)
rng, init_rng = jax.random.split(rng, num=2)
class DecoderWrapper(nn.Module):
decoder: Callable[[], nn.Module]
@nn.compact
def __call__(self, slots, train=False):
return self.decoder()(slots, train)
decoder_model = DecoderWrapper(decoder=model.decoder)
with gr.Blocks() as demo:
local_slots = gr.State(np.zeros((11, 64), dtype=np.float32))
local_orig_pos = gr.State(np.ones((11, 2), dtype=np.float32))
local_orig_scale = gr.State(np.ones((11, 2), dtype=np.float32))
local_pos = gr.State(np.zeros((11, 2), dtype=np.float32))
local_scale = gr.State(np.zeros((11, 2), dtype=np.float32))
local_probs = gr.State(np.zeros((11, 128, 128), dtype=np.float32))
with gr.Row():
gr_choose_image = gr.Dropdown(
[f"img{i}" for i in range(1, 9)], label="CLEVR Image", info="Start by a picking an image from the CLEVR dataset."
)
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
gr_image_1 = gr.Image(type="numpy", shape=(112, 112), source="canvas", label="Decoding")
with gr.Column():
gr_image_2 = gr.Image(type="numpy", shape=(112, 112), source="canvas", label="Segmentation")
with gr.Column():
gr_slot_slider = gr.Slider(1, 11, value=1, step=1, label="Slot Index",
info="Change slot index too see the segmentation mask, position and scale of each slot.")
gr_y_slider = gr.Slider(-1, 1, value=0, step=0.01, label="X")
gr_x_slider = gr.Slider(-1, 1, value=0, step=0.01, label="Y")
gr_sy_slider = gr.Slider(0.5, 1.5, value=1., step=0.1, label="Width Multiplier")
gr_sx_slider = gr.Slider(0.5, 1.5, value=1., step=0.1, label="Height Multiplier")
with gr.Row():
with gr.Column():
gr_button_render = gr.Button("Render", variant="primary", info="Render a new image with altered positions and scales.")
with gr.Column():
gr_button_reset = gr.Button("Reset", info="Reset slot statistics.")
def update_image_and_segmentation(name, idx):
idx = idx - 1
img_input = load_image(name)
out = model.apply(
{"params": state.params, **state.variables},
video=img_input[None, None],
rngs={"state_init": init_rng},
train=False)
probs = np.array(nn.softmax(out["outputs"]["segmentation_logits"][0, 0, :, :, :, 0], axis=0))
img = np.array(out["outputs"]["video"][0, 0])
img = np.clip(img, 0, 1)
slots_ = np.array(out["states"])
slots = slots_[0, 0, :, :-4]
pos = slots_[0, 0, :, -4: -2]
scale = slots_[0, 0, :, -2:]
return (img * 255).astype(np.uint8), (probs[idx] * 255).astype(np.uint8), float(pos[idx, 0]), \
float(pos[idx, 1]), probs, slots, pos, np.ones((11, 2), dtype=np.float32), pos, scale
gr_choose_image.change(
fn=update_image_and_segmentation,
inputs=[gr_choose_image, gr_slot_slider],
outputs=[gr_image_1, gr_image_2, gr_x_slider, gr_y_slider, local_probs,
local_slots, local_pos, local_scale, local_orig_pos, local_orig_scale]
)
def update_sliders(idx, local_probs, local_pos, local_scale):
idx = idx - 1 # 1-indexing to 0-indexing
return (local_probs[idx] * 255).astype(np.uint8), float(local_pos[idx, 0]), \
float(local_pos[idx, 1]), float(local_scale[idx, 0]), float(local_scale[idx, 1])
gr_slot_slider.change(
fn=update_sliders,
inputs=[gr_slot_slider, local_probs, local_pos, local_scale],
outputs=[gr_image_2, gr_x_slider, gr_y_slider, gr_sx_slider, gr_sy_slider]
)
def update_pos_x(idx, val, local_pos):
local_pos = np.copy(local_pos)
local_pos[idx - 1, 0] = val
return local_pos
def update_pos_y(idx, val, local_pos):
local_pos = np.copy(local_pos)
local_pos[idx - 1, 1] = val
return local_pos
def update_scale_x(idx, val, local_scale):
local_scale = np.copy(local_scale)
local_scale[idx - 1, 0] = val
return local_scale
def update_scale_y(idx, val, local_scale):
local_scale = np.copy(local_scale)
local_scale[idx - 1, 1] = val
return local_scale
gr_x_slider.change(
fn=update_pos_x,
inputs=[gr_slot_slider, gr_x_slider, local_pos],
outputs=local_pos
)
gr_y_slider.change(
fn=update_pos_y,
inputs=[gr_slot_slider, gr_y_slider, local_pos],
outputs=local_pos
)
gr_sx_slider.change(
fn=update_scale_x,
inputs=[gr_slot_slider, gr_sx_slider, local_scale],
outputs=local_scale
)
gr_sy_slider.change(
fn=update_scale_y,
inputs=[gr_slot_slider, gr_sy_slider, local_scale],
outputs=local_scale
)
def render(idx, local_slots, local_pos, local_scale, local_orig_scale):
idx = idx - 1
slots = np.concatenate([local_slots, local_pos, local_scale * local_orig_scale], axis=-1)
slots = jnp.array(slots)
out = decoder_model.apply(
{"params": state.params, **state.variables},
slots=slots[None, None],
train=False
)
probs = np.array(nn.softmax(out["segmentation_logits"][0, 0, :, :, :, 0], axis=0))
image = np.array(out["video"][0, 0])
image = np.clip(image, 0, 1)
return (image * 255).astype(np.uint8), (probs[idx] * 255).astype(np.uint8), probs
gr_button_render.click(
fn=render,
inputs=[gr_slot_slider, local_slots, local_pos, local_scale, local_orig_scale],
outputs=[gr_image_1, gr_image_2, local_probs]
)
def reset(idx, local_orig_pos):
idx = idx - 1
return np.copy(local_orig_pos), np.ones((11, 2), dtype=np.float32), float(local_orig_pos[idx, 0]), \
float(local_orig_pos[idx, 1]), 1., 1.
gr_button_reset.click(
fn=reset,
inputs=[gr_slot_slider, local_orig_pos],
outputs=[local_pos, local_scale, gr_x_slider, gr_y_slider, gr_sx_slider, gr_sy_slider]
)
demo.launch()
|