omninexus commited on
Commit
68add72
Β·
verified Β·
1 Parent(s): d22869a

Upload 5 files

Browse files
Files changed (5) hide show
  1. README.md +8 -6
  2. app.py +267 -0
  3. doge.png +0 -0
  4. equation.png +0 -0
  5. requirements.txt +9 -0
README.md CHANGED
@@ -1,14 +1,16 @@
1
  ---
2
- title: Deepseek Vision
3
- emoji: πŸ“ˆ
4
- colorFrom: pink
5
- colorTo: gray
6
  sdk: gradio
7
- sdk_version: 5.13.1
8
  app_file: app.py
9
  pinned: false
10
  license: mit
11
- short_description: DeepSeek got eyes :)
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
1
  ---
2
+ title: Chat With Janus-Pro-7B
3
+ emoji: 🌍
4
+ colorFrom: indigo
5
+ colorTo: red
6
  sdk: gradio
7
+ sdk_version: 5.1.0
8
  app_file: app.py
9
  pinned: false
10
  license: mit
11
+ short_description: A unified multimodal understanding and generation model.
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
15
+
16
+ Please note that after generating the images with Janus-Pro, we use Real-ESRGAN to perform 2x image upsampling (just in this demo). This upsampling does not alter the content of the images but makes them slightly clearer for easier viewing.
app.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoConfig, AutoModelForCausalLM
4
+ from janus.models import MultiModalityCausalLM, VLChatProcessor
5
+ from janus.utils.io import load_pil_images
6
+ from PIL import Image
7
+
8
+ import numpy as np
9
+ import os
10
+ import time
11
+ from Upsample import RealESRGAN
12
+ import spaces # Import spaces for ZeroGPU compatibility
13
+
14
+
15
+ # Load model and processor
16
+ model_path = "deepseek-ai/Janus-Pro-7B"
17
+ config = AutoConfig.from_pretrained(model_path)
18
+ language_config = config.language_config
19
+ language_config._attn_implementation = 'eager'
20
+ vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
21
+ language_config=language_config,
22
+ trust_remote_code=True)
23
+ if torch.cuda.is_available():
24
+ vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
25
+ else:
26
+ vl_gpt = vl_gpt.to(torch.float16)
27
+
28
+ vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
29
+ tokenizer = vl_chat_processor.tokenizer
30
+ cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
31
+
32
+ # SR model
33
+ sr_model = RealESRGAN(torch.device('cuda' if torch.cuda.is_available() else 'cpu'), scale=2)
34
+ sr_model.load_weights(f'weights/RealESRGAN_x2.pth', download=False)
35
+
36
+ @torch.inference_mode()
37
+ @spaces.GPU(duration=120)
38
+ # Multimodal Understanding function
39
+ def multimodal_understanding(image, question, seed, top_p, temperature):
40
+ # Clear CUDA cache before generating
41
+ torch.cuda.empty_cache()
42
+
43
+ # set seed
44
+ torch.manual_seed(seed)
45
+ np.random.seed(seed)
46
+ torch.cuda.manual_seed(seed)
47
+
48
+ conversation = [
49
+ {
50
+ "role": "<|User|>",
51
+ "content": f"<image_placeholder>\n{question}",
52
+ "images": [image],
53
+ },
54
+ {"role": "<|Assistant|>", "content": ""},
55
+ ]
56
+
57
+ pil_images = [Image.fromarray(image)]
58
+ prepare_inputs = vl_chat_processor(
59
+ conversations=conversation, images=pil_images, force_batchify=True
60
+ ).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
61
+
62
+
63
+ inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
64
+
65
+ outputs = vl_gpt.language_model.generate(
66
+ inputs_embeds=inputs_embeds,
67
+ attention_mask=prepare_inputs.attention_mask,
68
+ pad_token_id=tokenizer.eos_token_id,
69
+ bos_token_id=tokenizer.bos_token_id,
70
+ eos_token_id=tokenizer.eos_token_id,
71
+ max_new_tokens=512,
72
+ do_sample=False if temperature == 0 else True,
73
+ use_cache=True,
74
+ temperature=temperature,
75
+ top_p=top_p,
76
+ )
77
+
78
+ answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
79
+ return answer
80
+
81
+
82
+ def generate(input_ids,
83
+ width,
84
+ height,
85
+ temperature: float = 1,
86
+ parallel_size: int = 5,
87
+ cfg_weight: float = 5,
88
+ image_token_num_per_image: int = 576,
89
+ patch_size: int = 16):
90
+ # Clear CUDA cache before generating
91
+ torch.cuda.empty_cache()
92
+
93
+ tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
94
+ for i in range(parallel_size * 2):
95
+ tokens[i, :] = input_ids
96
+ if i % 2 != 0:
97
+ tokens[i, 1:-1] = vl_chat_processor.pad_id
98
+ inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
99
+ generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)
100
+
101
+ pkv = None
102
+ for i in range(image_token_num_per_image):
103
+ with torch.no_grad():
104
+ outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds,
105
+ use_cache=True,
106
+ past_key_values=pkv)
107
+ pkv = outputs.past_key_values
108
+ hidden_states = outputs.last_hidden_state
109
+ logits = vl_gpt.gen_head(hidden_states[:, -1, :])
110
+ logit_cond = logits[0::2, :]
111
+ logit_uncond = logits[1::2, :]
112
+ logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
113
+ probs = torch.softmax(logits / temperature, dim=-1)
114
+ next_token = torch.multinomial(probs, num_samples=1)
115
+ generated_tokens[:, i] = next_token.squeeze(dim=-1)
116
+ next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
117
+
118
+ img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
119
+ inputs_embeds = img_embeds.unsqueeze(dim=1)
120
+
121
+
122
+
123
+ patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
124
+ shape=[parallel_size, 8, width // patch_size, height // patch_size])
125
+
126
+ return generated_tokens.to(dtype=torch.int), patches
127
+
128
+ def unpack(dec, width, height, parallel_size=5):
129
+ dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
130
+ dec = np.clip((dec + 1) / 2 * 255, 0, 255)
131
+
132
+ visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
133
+ visual_img[:, :, :] = dec
134
+
135
+ return visual_img
136
+
137
+
138
+
139
+ @torch.inference_mode()
140
+ @spaces.GPU(duration=120) # Specify a duration to avoid timeout
141
+ def generate_image(prompt,
142
+ seed=None,
143
+ guidance=5,
144
+ t2i_temperature=1.0):
145
+ # Clear CUDA cache and avoid tracking gradients
146
+ torch.cuda.empty_cache()
147
+ # Set the seed for reproducible results
148
+ if seed is not None:
149
+ torch.manual_seed(seed)
150
+ torch.cuda.manual_seed(seed)
151
+ np.random.seed(seed)
152
+ width = 384
153
+ height = 384
154
+ parallel_size = 5
155
+
156
+ with torch.no_grad():
157
+ messages = [{'role': '<|User|>', 'content': prompt},
158
+ {'role': '<|Assistant|>', 'content': ''}]
159
+ text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
160
+ sft_format=vl_chat_processor.sft_format,
161
+ system_prompt='')
162
+ text = text + vl_chat_processor.image_start_tag
163
+
164
+ input_ids = torch.LongTensor(tokenizer.encode(text))
165
+ output, patches = generate(input_ids,
166
+ width // 16 * 16,
167
+ height // 16 * 16,
168
+ cfg_weight=guidance,
169
+ parallel_size=parallel_size,
170
+ temperature=t2i_temperature)
171
+ images = unpack(patches,
172
+ width // 16 * 16,
173
+ height // 16 * 16,
174
+ parallel_size=parallel_size)
175
+
176
+ # return [Image.fromarray(images[i]).resize((768, 768), Image.LANCZOS) for i in range(parallel_size)]
177
+ stime = time.time()
178
+ ret_images = [image_upsample(Image.fromarray(images[i])) for i in range(parallel_size)]
179
+ print(f'upsample time: {time.time() - stime}')
180
+ return ret_images
181
+
182
+
183
+ @spaces.GPU(duration=60)
184
+ def image_upsample(img: Image.Image) -> Image.Image:
185
+ if img is None:
186
+ raise Exception("Image not uploaded")
187
+
188
+ width, height = img.size
189
+
190
+ if width >= 5000 or height >= 5000:
191
+ raise Exception("The image is too large.")
192
+
193
+ global sr_model
194
+ result = sr_model.predict(img.convert('RGB'))
195
+ return result
196
+
197
+
198
+ # Gradio interface
199
+ with gr.Blocks() as demo:
200
+ gr.Markdown(value="# Multimodal Understanding")
201
+ with gr.Row():
202
+ image_input = gr.Image()
203
+ with gr.Column():
204
+ question_input = gr.Textbox(label="Question")
205
+ und_seed_input = gr.Number(label="Seed", precision=0, value=42)
206
+ top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
207
+ temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
208
+
209
+ understanding_button = gr.Button("Chat")
210
+ understanding_output = gr.Textbox(label="Response")
211
+
212
+ examples_inpainting = gr.Examples(
213
+ label="Multimodal Understanding examples",
214
+ examples=[
215
+ [
216
+ "explain this meme",
217
+ "doge.png",
218
+ ],
219
+ [
220
+ "Convert the formula into latex code.",
221
+ "equation.png",
222
+ ],
223
+ ],
224
+ inputs=[question_input, image_input],
225
+ )
226
+
227
+
228
+ gr.Markdown(value="# Text-to-Image Generation")
229
+
230
+
231
+
232
+ with gr.Row():
233
+ cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
234
+ t2i_temperature = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.05, label="temperature")
235
+
236
+ prompt_input = gr.Textbox(label="Prompt. (Prompt in more detail can help produce better images!")
237
+ seed_input = gr.Number(label="Seed (Optional)", precision=0, value=1234)
238
+
239
+ generation_button = gr.Button("Generate Images")
240
+
241
+ image_output = gr.Gallery(label="Generated Images", columns=2, rows=2, height=300)
242
+
243
+ examples_t2i = gr.Examples(
244
+ label="Text to image generation examples.",
245
+ examples=[
246
+ "Master shifu racoon wearing drip attire as a street gangster.",
247
+ "The face of a beautiful girl",
248
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
249
+ "A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting,immortal,fluffy, shiny mane,Petals,fairyism,unreal engine 5 and Octane Render,highly detailed, photorealistic, cinematic, natural colors.",
250
+ "The image features an intricately designed eye set against a circular backdrop adorned with ornate swirl patterns that evoke both realism and surrealism. At the center of attention is a strikingly vivid blue iris surrounded by delicate veins radiating outward from the pupil to create depth and intensity. The eyelashes are long and dark, casting subtle shadows on the skin around them which appears smooth yet slightly textured as if aged or weathered over time.\n\nAbove the eye, there's a stone-like structure resembling part of classical architecture, adding layers of mystery and timeless elegance to the composition. This architectural element contrasts sharply but harmoniously with the organic curves surrounding it. Below the eye lies another decorative motif reminiscent of baroque artistry, further enhancing the overall sense of eternity encapsulated within each meticulously crafted detail. \n\nOverall, the atmosphere exudes a mysterious aura intertwined seamlessly with elements suggesting timelessness, achieved through the juxtaposition of realistic textures and surreal artistic flourishes. Each component\u2014from the intricate designs framing the eye to the ancient-looking stone piece above\u2014contributes uniquely towards creating a visually captivating tableau imbued with enigmatic allure.",
251
+ ],
252
+ inputs=prompt_input,
253
+ )
254
+
255
+ understanding_button.click(
256
+ multimodal_understanding,
257
+ inputs=[image_input, question_input, und_seed_input, top_p, temperature],
258
+ outputs=understanding_output
259
+ )
260
+
261
+ generation_button.click(
262
+ fn=generate_image,
263
+ inputs=[prompt_input, seed_input, cfg_weight_input, t2i_temperature],
264
+ outputs=image_output
265
+ )
266
+
267
+ demo.launch(share=True)
doge.png ADDED
equation.png ADDED
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ accelerate
2
+ diffusers
3
+ gradio
4
+ numpy
5
+ torch
6
+ safetensors
7
+ transformers
8
+ opencv-python
9
+ git+https://github.com/deepseek-ai/Janus