omlakhani commited on
Commit
147b634
·
1 Parent(s): d824cc4

Delete app2.py

Browse files
Files changed (1) hide show
  1. app2.py +0 -72
app2.py DELETED
@@ -1,72 +0,0 @@
1
- #!/usr/bin/env python3
2
-
3
- import os
4
- import gradio as gr
5
- from dotenv import load_dotenv
6
- import s3fs
7
-
8
- load_dotenv('myenvfile.env')
9
-
10
- os.environ['OPENAI_API_KEY'] = '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'
11
- os.environ['AWS_ACCESS_KEY_ID']="AKIAZOU6TJIYU64BCGHE"
12
- os.environ['AWS_SECRET_ACCESS_KEY']="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"
13
- from llama_index import GPTListIndex, GPTSimpleVectorIndex
14
- from langchain.agents import load_tools, Tool, initialize_agent
15
- from langchain.llms import OpenAI
16
- from langchain.agents import ZeroShotAgent, Tool, AgentExecutor
17
- from langchain.agents import initialize_agent, Tool
18
- from langchain import OpenAI, LLMChain
19
- from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader
20
-
21
-
22
- fs = s3fs.S3FileSystem(
23
- key="AKIAZOU6TJIYU64BCGHE",
24
- secret="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"
25
- )
26
-
27
- # download the index file from S3
28
- with fs.open('notesinendocrinology/index.json', 'rb') as f:
29
- index_data = f.read()
30
-
31
- import json
32
-
33
- # Decode the bytes to a string using UTF-8 encoding
34
- index_str = index_data.decode('utf-8')
35
-
36
- # Load the JSON data into a dictionary
37
- index_dict = json.loads(index_str)
38
-
39
- # create a new index object and load the saved index from the downloaded file
40
- index = GPTSimpleVectorIndex.load_from_string(index_str)
41
-
42
-
43
- def querying_db(query: str):
44
- response = index.query(query)
45
- return response
46
-
47
-
48
- tools = [
49
- Tool(
50
- name="QueryingDB",
51
- func=querying_db,
52
- description="This function takes a query string as input and returns the most relevant answer from the documentation as output"
53
- )
54
- ]
55
-
56
- llm = OpenAI(temperature=0)
57
-
58
-
59
- def get_answer(query_string):
60
- agent = initialize_agent(tools, llm, agent="zero-shot-react-description")
61
- result = agent.run(query_string)
62
- return result
63
-
64
-
65
- def qa_app(query):
66
- answer = get_answer(query)
67
- return answer
68
-
69
-
70
- inputs = gr.inputs.Textbox(label="Enter your question:")
71
- output = gr.outputs.Textbox(label="Answer:")
72
- gr.Interface(fn=qa_app, inputs=inputs, outputs=output, title="Query Answering App").launch()