Spaces:
Runtime error
Runtime error
SZhanZ
commited on
Commit
Β·
4b25987
1
Parent(s):
6c162e9
init commit
Browse files- .gitattributes +1 -0
- README.md +0 -0
- app.py +95 -55
- examples/image1.jpg +3 -0
- examples/image2.jpg +0 -0
- requirements.txt +5 -1
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
examples/image1.jpg filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
File without changes
|
app.py
CHANGED
|
@@ -1,64 +1,104 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
def
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
)
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
response += token
|
| 40 |
-
yield response
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
"""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
-
demo = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
-
additional_inputs=[
|
| 49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
-
)
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
| 4 |
+
from PIL import Image, ImageDraw
|
| 5 |
|
| 6 |
+
def draw_bbox(image, bbox):
|
| 7 |
+
x1, y1, x2, y2 = bbox
|
| 8 |
+
draw = ImageDraw.Draw(image)
|
| 9 |
+
draw.rectangle((x1, y1, x2, y2), outline="red", width=5)
|
| 10 |
+
return image
|
| 11 |
|
| 12 |
+
def extract_bbox_answer(content):
|
| 13 |
+
bbox_pattern = r'\{.*\[(\d+),\s*(\d+),\s*(\d+),\s*(\d+)]\s*.*\}'
|
| 14 |
+
bbox_match = re.search(bbox_pattern, content)
|
| 15 |
+
if bbox_match:
|
| 16 |
+
bbox = [int(bbox_match.group(1)), int(bbox_match.group(2)), int(bbox_match.group(3)), int(bbox_match.group(4))]
|
| 17 |
+
return bbox
|
| 18 |
+
return [0, 0, 0, 0]
|
| 19 |
|
| 20 |
+
def process_image_and_text(image, text):
|
| 21 |
+
"""Process image and text input, return thinking process and bbox"""
|
| 22 |
+
question = f"Please provide the bounding box coordinate of the region this sentence describes: {text}."
|
| 23 |
+
QUESTION_TEMPLATE = "{Question} First output the thinking process in <think> </think> tags and then output the final answer in <answer> </answer> tags. Output the final answer in JSON format."
|
| 24 |
+
|
| 25 |
+
messages = [
|
| 26 |
+
{
|
| 27 |
+
"role": "user",
|
| 28 |
+
"content": [
|
| 29 |
+
{"type": "image"},
|
| 30 |
+
{"type": "text", "text": QUESTION_TEMPLATE.format(Question=question)},
|
| 31 |
+
],
|
| 32 |
+
}
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
text = processor.apply_chat_template(
|
| 36 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 37 |
+
)
|
| 38 |
|
| 39 |
+
inputs = processor(
|
| 40 |
+
text=[text],
|
| 41 |
+
images=image,
|
| 42 |
+
return_tensors="pt",
|
| 43 |
+
padding=True,
|
| 44 |
+
padding_side="left",
|
| 45 |
+
add_special_tokens=False,
|
| 46 |
+
)
|
| 47 |
|
| 48 |
+
# inputs = inputs
|
| 49 |
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
generated_ids = model.generate(**inputs, use_cache=True, max_new_tokens=256, do_sample=False)
|
| 52 |
+
generated_ids_trimmed = [
|
| 53 |
+
out_ids[len(inputs.input_ids[0]):] for out_ids in generated_ids
|
| 54 |
+
]
|
| 55 |
+
|
| 56 |
+
output_text = processor.batch_decode(
|
| 57 |
+
generated_ids_trimmed, skip_special_tokens=True
|
| 58 |
+
)[0]
|
| 59 |
+
print("output_text: ", output_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
# Extract thinking process
|
| 62 |
+
think_match = re.search(r'<think>(.*?)</think>', output_text, re.DOTALL)
|
| 63 |
+
thinking_process = think_match.group(1).strip() if think_match else "No thinking process found"
|
| 64 |
+
|
| 65 |
+
# Get bbox and draw
|
| 66 |
+
bbox = extract_bbox_answer(output_text)
|
| 67 |
+
|
| 68 |
+
# Draw bbox on the image
|
| 69 |
+
result_image = image.copy()
|
| 70 |
+
result_image = draw_bbox(result_image, bbox)
|
| 71 |
+
|
| 72 |
+
return thinking_process, result_image
|
| 73 |
|
| 74 |
if __name__ == "__main__":
|
| 75 |
+
import gradio as gr
|
| 76 |
+
|
| 77 |
+
# model_path = "/data/shz/project/vlm-r1/VLM-R1/output/Qwen2.5-VL-3B-GRPO-REC/checkpoint-500"
|
| 78 |
+
model_path = "SZhanZ/Qwen2.5VL-VLM-R1-REC-step500"
|
| 79 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(model_path)
|
| 80 |
+
processor = AutoProcessor.from_pretrained(model_path)
|
| 81 |
+
|
| 82 |
+
def gradio_interface(image, text):
|
| 83 |
+
thinking, result_image = process_image_and_text(image, text)
|
| 84 |
+
return thinking, result_image
|
| 85 |
+
|
| 86 |
+
demo = gr.Interface(
|
| 87 |
+
fn=gradio_interface,
|
| 88 |
+
inputs=[
|
| 89 |
+
gr.Image(type="pil", label="Input Image"),
|
| 90 |
+
gr.Textbox(label="Description Text")
|
| 91 |
+
],
|
| 92 |
+
outputs=[
|
| 93 |
+
gr.Textbox(label="Thinking Process"),
|
| 94 |
+
gr.Image(type="pil", label="Result with Bbox")
|
| 95 |
+
],
|
| 96 |
+
title="Visual Referring Expression Demo",
|
| 97 |
+
description="Upload an image and input description text, the system will return the thinking process and region annotation",
|
| 98 |
+
examples=[
|
| 99 |
+
["examples/image1.jpg", "food with the highest protein"],
|
| 100 |
+
["examples/image2.jpg", "the cheapest laptop"],
|
| 101 |
+
]
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
examples/image1.jpg
ADDED
|
Git LFS Details
|
examples/image2.jpg
ADDED
|
requirements.txt
CHANGED
|
@@ -1 +1,5 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=2.0.0
|
| 2 |
+
git+https://github.com/huggingface/transformers
|
| 3 |
+
Pillow>=10.0.0
|
| 4 |
+
httpx[socks]
|
| 5 |
+
accelerate>=0.26.0
|