Spaces:
Runtime error
Runtime error
| import re | |
| import torch | |
| from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor | |
| from PIL import Image, ImageDraw | |
| def draw_bbox(image, bbox): | |
| x1, y1, x2, y2 = bbox | |
| draw = ImageDraw.Draw(image) | |
| draw.rectangle((x1, y1, x2, y2), outline="red", width=5) | |
| return image | |
| def extract_bbox_answer(content): | |
| bbox_pattern = r'\{.*\[(\d+),\s*(\d+),\s*(\d+),\s*(\d+)]\s*.*\}' | |
| bbox_match = re.search(bbox_pattern, content) | |
| if bbox_match: | |
| bbox = [int(bbox_match.group(1)), int(bbox_match.group(2)), int(bbox_match.group(3)), int(bbox_match.group(4))] | |
| return bbox | |
| return [0, 0, 0, 0] | |
| import spaces | |
| def process_image_and_text(image, text): | |
| """Process image and text input, return thinking process and bbox""" | |
| question = f"Please provide the bounding box coordinate of the region this sentence describes: {text}." | |
| QUESTION_TEMPLATE = "{Question} First output the thinking process in <think> </think> tags and then output the final answer in <answer> </answer> tags. Output the final answer in JSON format." | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image"}, | |
| {"type": "text", "text": QUESTION_TEMPLATE.format(Question=question)}, | |
| ], | |
| } | |
| ] | |
| text = processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| inputs = processor( | |
| text=[text], | |
| images=image, | |
| return_tensors="pt", | |
| padding=True, | |
| padding_side="left", | |
| add_special_tokens=False, | |
| ) | |
| inputs = inputs.to("cuda") | |
| with torch.no_grad(): | |
| generated_ids = model.generate(**inputs, use_cache=True, max_new_tokens=256, do_sample=False) | |
| generated_ids_trimmed = [ | |
| out_ids[len(inputs.input_ids[0]):] for out_ids in generated_ids | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True | |
| )[0] | |
| print("output_text: ", output_text) | |
| # Extract thinking process | |
| think_match = re.search(r'<think>(.*?)</think>', output_text, re.DOTALL) | |
| thinking_process = think_match.group(1).strip() if think_match else "No thinking process found" | |
| # Get bbox and draw | |
| bbox = extract_bbox_answer(output_text) | |
| # Draw bbox on the image | |
| result_image = image.copy() | |
| result_image = draw_bbox(result_image, bbox) | |
| return thinking_process, result_image | |
| if __name__ == "__main__": | |
| import gradio as gr | |
| # model_path = "/data/shz/project/vlm-r1/VLM-R1/output/Qwen2.5-VL-3B-GRPO-REC/checkpoint-500" | |
| model_path = "SZhanZ/Qwen2.5VL-VLM-R1-REC-step500" | |
| # device = "cuda" if torch.cuda.is_available() else "cpu" | |
| device = "cuda" | |
| model = Qwen2_5_VLForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16) | |
| model.to(device) | |
| processor = AutoProcessor.from_pretrained(model_path) | |
| def gradio_interface(image, text): | |
| thinking, result_image = process_image_and_text(image, text) | |
| return thinking, result_image | |
| demo = gr.Interface( | |
| fn=gradio_interface, | |
| inputs=[ | |
| gr.Image(type="pil", label="Input Image"), | |
| gr.Textbox(label="Description Text") | |
| ], | |
| outputs=[ | |
| gr.Textbox(label="Thinking Process"), | |
| gr.Image(type="pil", label="Result with Bbox") | |
| ], | |
| title="Visual Referring Expression Demo", | |
| description="Upload an image and input description text, the system will return the thinking process and region annotation. \n\nOur GitHub: [VLM-R1](https://github.com/om-ai-lab/VLM-R1/tree/main)", | |
| examples=[ | |
| ["examples/image1.jpg", "person with blue shirt"], | |
| ["examples/image2.jpg", "food with the highest protein"], | |
| ["examples/image3.jpg", "the cheapest Apple laptop"], | |
| ], | |
| cache_examples=False, | |
| examples_per_page=10 | |
| ) | |
| demo.launch(server_name="0.0.0.0", server_port=7860, share=True) |