Spaces:
Running
Running
File size: 15,239 Bytes
1b7e88c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import json
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
import yaml
from omagent_core.base import BotBase
from omagent_core.models.llms.base import BaseLLM, BaseLLMBackend
from omagent_core.models.llms.prompt.prompt import PromptTemplate
from omagent_core.models.llms.schemas import Message
from omagent_core.utils.logger import logging
from omagent_core.utils.registry import registry
from pydantic import Field, field_validator
from .base import BaseTool
CURRENT_PATH = Path(__file__).parents[0]
class ToolManager(BaseLLMBackend):
tools: Dict[str, BaseTool] = Field(
default=registry.mapping["tool"], validate_default=True
)
llm: Optional[BaseLLM] = Field(default=None, validate_default=True)
prompts: List[PromptTemplate] = Field(
default=[
PromptTemplate.from_file(
CURRENT_PATH.joinpath("sys_prompt.prompt"), role="system"
),
PromptTemplate.from_file(
CURRENT_PATH.joinpath("user_prompt.prompt"), role="user"
),
]
)
@field_validator("tools", mode="before")
@classmethod
def init_tools(cls, tools: Union[List, Dict]) -> Dict[str, BaseTool]:
if isinstance(tools, dict):
for key, value in tools.items():
if isinstance(value, type) and issubclass(value, BaseTool):
tools[key] = value = value()
elif isinstance(value, dict):
tools[key] = value = registry.get_tool(key)(**value)
elif not isinstance(value, BaseTool):
raise ValueError(
"The tool must be an instance of a sub class of BaseTool, not {}".format(
type(value)
)
)
if key != value.name:
raise ValueError(
"The tool name {} not match with the tool {}.".format(
key, value.name
)
)
return tools
elif isinstance(tools, list):
init_tools = {}
for tool in tools:
if isinstance(tool, str):
t = registry.get_tool(tool)
if isinstance(t, BaseTool):
init_tools[tool] = t
elif isinstance(t, type) and issubclass(t, BaseTool):
init_tools[tool] = t()
else:
raise ValueError("Invalid tool type {}".format(type(t)))
elif isinstance(tool, dict):
t = registry.get_tool(tool["name"])
if isinstance(t, type) and issubclass(t, BaseTool):
init_tools[tool["name"]] = t(**tool)
else:
raise ValueError("Invalid tool type {}".format(type(t)))
elif isinstance(tool, BaseTool):
init_tools[tool.name] = tool
else:
raise ValueError("Invalid tool type {}".format(type(tool)))
return init_tools
else:
raise ValueError(
"Wrong tools type {}, should be list or dict in ToolManager".format(
type(tools)
)
)
def model_post_init(self, __context: Any) -> None:
for _, attr_value in self.__dict__.items():
if isinstance(attr_value, BotBase):
attr_value._parent = self
for tool in self.tools.values():
tool._parent = self
@property
def workflow_instance_id(self) -> str:
if hasattr(self, "_parent"):
return self._parent.workflow_instance_id
return None
@workflow_instance_id.setter
def workflow_instance_id(self, value: str):
if hasattr(self, "_parent"):
self._parent.workflow_instance_id = value
def add_tool(self, tool: BaseTool):
self.tools[tool.name] = tool
def tool_names(self) -> List:
return list(self.tools.keys())
def generate_prompt(self):
prompt = ""
for index, (name, tool) in enumerate(self.tools.items()):
prompt += f"{index + 1}. {name}: {tool.description}\n"
return prompt
def generate_schema(self, style: str = "gpt"):
if style == "gpt":
return [tool.generate_schema() for tool in self.tools.values()]
else:
raise ValueError("Only support gpt style tool selection schema")
def execute(self, tool_name: str, args: Union[str, dict]):
if tool_name not in self.tools:
raise KeyError(f"The tool {tool_name} is invalid, not in the tool list.")
tool = self.tools.get(tool_name)
if type(args) is str:
try:
args = json.loads(args)
except Exception as error:
if self.llm is not None:
try:
args = self.dynamic_json_fixs(
args, tool.generate_schema(), [], str(error)
)
args = json.loads(args)
except:
raise ValueError(
"The args for tool execution is not a valid json string and can not be fixed. [{}]".format(
args
)
)
else:
raise ValueError(
"The args for tool execution is not a valid json string. [{}]".format(
args
)
)
if tool.args_schema != None:
args = tool.args_schema.validate_args(args)
return tool.run(args)
async def aexecute(self, tool_name: str, args: Union[str, dict]):
if tool_name not in self.tools:
raise KeyError(f"The tool {tool_name} is invalid, not in the tool list.")
tool = self.tools.get(tool_name)
if type(args) is str:
try:
args = json.loads(args)
except Exception as error:
if self.llm is not None:
try:
args = self.dynamic_json_fixs(
args, tool.generate_schema(), [], str(error)
)
args = json.loads(args)
except:
raise ValueError(
"The args for tool execution is not a valid json string and can not be fixed. [{}]".format(
args
)
)
else:
raise ValueError(
"The args for tool execution is not a valid json string. [{}]".format(
args
)
)
if tool.args_schema != None:
args = tool.args_schema.validate_args(args)
return await tool.arun(args)
def dynamic_json_fixs(
self,
broken_json,
function_schema,
messages: list = [],
error_message: str = None,
):
logging.warning(
"Schema Validation for Function call {} failed, trying to fix it...".format(
function_schema["name"]
)
)
messages = [
*messages,
{
"role": "system",
"content": "\n".join(
[
"Your last function call result in error",
"--- Error ---",
error_message,
"Your task is to fix all errors exist in the Broken Json String to make the json validate for the schema in the given function, and use new string to call the function again.",
"--- Notice ---",
"- You need to carefully check the json string and fix the errors or adding missing value in it.",
"- Do not give your own opinion or imaging new info or delete exisiting info!",
"- Make sure the new function call does not contains information about this fix task!",
"--- Broken Json String ---",
broken_json,
"Start!",
]
),
},
]
fix_res = self.llm.generate(
records=[Message(**item) for item in messages], tool_choice=function_schema
)
return fix_res["choices"][0]["message"]["tool_calls"][0]["function"][
"arguments"
]
@classmethod
def from_file(cls, file: Union[str, Path]):
if type(file) is str:
file = Path(file)
elif type(file) is not Path:
raise ValueError("Only support str or pathlib.Path")
if not file.exists():
raise FileNotFoundError("The file {} is not exists.".format(file))
if file.suffix == ".json":
config = json.load(open(file, "r"))
elif file.suffix in (".yaml", ".yml"):
config = yaml.load(open(file, "r"), Loader=yaml.FullLoader)
else:
raise ValueError("Only support json or yaml file.")
return cls(**config)
def execute_task(self, task, related_info="", function=None):
if self.llm == None:
raise ValueError(
"The execute_task method requires the llm field to be initialized."
)
chat_complete_res = self.infer(
[{"task": task, "related_info": related_info}],
tools=self.generate_schema(),
)[0]
logging.info(f"ToolManager execute_task chat_complete_res: {chat_complete_res}")
content = chat_complete_res["choices"][0]["message"].get("content")
tool_calls = chat_complete_res["choices"][0]["message"].get("tool_calls")
if not tool_calls:
toolcall_failed_structure = {
"status": "failed",
"content": content,
}
return "failed", content
else:
tool_calls = [tool_calls[0]]
toolcall_structure = {
"name": tool_calls[0]["function"]["name"],
"arguments": json.loads(tool_calls[0]["function"]["arguments"]),
}
self.callback.info(
agent_id=self.workflow_instance_id,
progress=f"Conqueror",
message=f'Tool {toolcall_structure["name"]} executing. Arguments: {toolcall_structure["arguments"]}',
)
tool_execution_res = []
try:
for each_tool_call in tool_calls:
result = self.execute(
each_tool_call["function"]["name"],
each_tool_call["function"]["arguments"],
)
tool_execution_res.append(result)
toolcall_structure = {
"status": "success",
"tool_use": list(
set(
[
each_tool_call["function"]["name"]
for each_tool_call in tool_calls
]
)
),
"argument": [
each_tool_call["function"]["arguments"]
for each_tool_call in tool_calls
],
}
return "success", tool_execution_res
except ValueError as error:
toolcall_failed_structure = {
"status": "failed",
"tool_use": list(
set(
[
each_tool_call["function"]["name"]
for each_tool_call in tool_calls
]
)
),
"argument": [
each_tool_call["function"]["arguments"]
for each_tool_call in tool_calls
],
"error": str(error),
}
return "failed", str(error)
async def aexecute_task(self, task, related_info=None, function=None):
if self.llm == None:
raise ValueError(
"The execute_task method requires the llm field to be initialized."
)
chat_complete_res = await self.ainfer(
[{"task": task, "related_info": list(related_info.keys())}],
tools=self.generate_schema(),
)[0]
logging.info(f"ToolManager aexecute_task chat_complete_res: {chat_complete_res}")
content = chat_complete_res["choices"][0]["message"].get("content")
tool_calls = chat_complete_res["choices"][0]["message"].get("tool_calls")
if not tool_calls:
toolcall_failed_structure = {
"status": "failed",
"content": content,
}
return "failed", content
else:
toolcall_structure = {
"name": tool_calls[0]["function"]["name"],
"arguments": json.loads(tool_calls[0]["function"]["arguments"]),
}
tool_execution_res = []
try:
for each_tool_call in tool_calls:
tool_execution_res.append(
await self.aexecute(
each_tool_call["function"]["name"],
each_tool_call["function"]["arguments"],
)
)
toolcall_structure = {
"status": "success",
"tool_use": list(
set(
[
each_tool_call["function"]["name"]
for each_tool_call in tool_calls
]
)
),
"argument": [
eval(each_tool_call["function"]["arguments"])
for each_tool_call in tool_calls
],
}
return "success", tool_execution_res
except ValueError as error:
toolcall_failed_structure = {
"status": "failed",
"tool_use": list(
set(
[
each_tool_call["function"]["name"]
for each_tool_call in tool_calls
]
)
),
"argument": [
each_tool_call["function"]["arguments"]
for each_tool_call in tool_calls
],
"error": str(error),
}
return "failed", str(error)
|