Spaces:
Runtime error
Runtime error
| import os | |
| from dotenv import load_dotenv | |
| from strictjson import strict_json_async | |
| from sarvam import speaker, translator | |
| load_dotenv() | |
| RAG_SYS_PROMPT = None | |
| RAG_USER_PROMPT = None | |
| AGENT_PROMPT = """You are an AI agent. | |
| You are given three functions - retriever (Retreives information from a database), translator and a speaker (converts text to speech). | |
| The database is a Grade {} {} Textbook. Your task is to assess the user query and determine which function to call. | |
| If the function is to be called, return response as None. If any function is not needed, you can answer to the query yourself. Also identify keywords in the query, | |
| """ | |
| async def llm(system_prompt: str, user_prompt: str) -> str: | |
| from groq import AsyncGroq | |
| client = AsyncGroq(api_key=os.get_env("GROQ_API_KEY")) | |
| messages = [ | |
| {"role": "system", "content": system_prompt}, | |
| {"role": "user", "content": user_prompt}, | |
| ] | |
| chat_completion = await client.chat.completions.create( | |
| messages=messages, | |
| model="llama3-70b-8192", | |
| temperature=0.3, | |
| max_tokens=360, | |
| top_p=1, | |
| stop=None, | |
| stream=False, | |
| ) | |
| return chat_completion.choices[0].message.content | |
| async def call_agent(user_prompt, grade, subject): | |
| system_prompt = AGENT_PROMPT.format(grade, subject) | |
| result = await strict_json_async( | |
| system_prompt=system_prompt, | |
| user_prompt=user_prompt, | |
| output_format={ | |
| "function": 'Type of function to call, type: Enum["retriever", "translator", "speaker", "none"]', | |
| "keywords": "Array of keywords, type: List[str]", | |
| "src_lang": "Identify the language that the user query is in, type: str", | |
| "dest_lang": """Identify the target language from the user query if the function is either "translator" or "speaker". If language is not found, return "none", | |
| type: Enum["hindi", "bengali", "kannada", "malayalam", "marathi", "odia", "punjabi", "tamil", "telugu", "english", "gujarati", "none"]""", | |
| "source": "Identify the sentence that the user wants to translate or speak. Retu 'none', type: Optional[str]", | |
| "response": "Your response, type: Optional[str]", | |
| }, | |
| llm=llm, | |
| ) | |
| return result | |
| async def function_caller(user_prompt, grade, subject, client): | |
| result = call_agent(user_prompt, grade, subject) | |
| function = result["function"].lower() | |
| if function == "none": | |
| return result["response"] | |
| elif function == "retriever": | |
| collection = f"{grade}_{subject}" | |
| data = client.search(collection, user_prompt) | |
| data = [i.document for i in data] | |
| system_prompt = RAG_SYS_PROMPT.format(grade, subject) | |
| user_prompt = RAG_USER_PROMPT.format(user_prompt) | |
| response = await llm(system_prompt, user_prompt) | |
| return response | |
| elif function == "translator": | |
| return await translator(result["response"], result["src_lang"], result["dest_lang"]) | |
| elif function == "speaker": | |
| return await speaker(result["response"], result["dest_lang"]) | |