from transformers import AutoModelForImageClassification, AutoProcessor import torch import gradio as gr # Load model and processor from Hugging Face model_name = "ombhojane/healthyPlantsModel" # Load model and processor model = AutoModelForImageClassification.from_pretrained(model_name) processor = AutoProcessor.from_pretrained(model_name) # Get class labels from model config id2label = model.config.id2label # Mapping of indices to class names # Define a function to run inference def classify_image(image): inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() # Get human-readable class label predicted_class_name = id2label.get(predicted_class_idx, "Unknown") return f"Predicted Class: {predicted_class_name}" # Create a Gradio interface demo = gr.Interface(fn=classify_image, inputs="image", outputs="text") demo.launch()