Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,18 +5,25 @@ import gradio as gr
|
|
5 |
# Load model and processor from Hugging Face
|
6 |
model_name = "ombhojane/healthyPlantsModel"
|
7 |
|
8 |
-
# Load model
|
9 |
model = AutoModelForImageClassification.from_pretrained(model_name)
|
10 |
processor = AutoProcessor.from_pretrained(model_name)
|
11 |
|
|
|
|
|
|
|
12 |
# Define a function to run inference
|
13 |
def classify_image(image):
|
14 |
inputs = processor(images=image, return_tensors="pt")
|
15 |
with torch.no_grad():
|
16 |
outputs = model(**inputs)
|
17 |
logits = outputs.logits
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Create a Gradio interface
|
22 |
demo = gr.Interface(fn=classify_image, inputs="image", outputs="text")
|
|
|
5 |
# Load model and processor from Hugging Face
|
6 |
model_name = "ombhojane/healthyPlantsModel"
|
7 |
|
8 |
+
# Load model and processor
|
9 |
model = AutoModelForImageClassification.from_pretrained(model_name)
|
10 |
processor = AutoProcessor.from_pretrained(model_name)
|
11 |
|
12 |
+
# Get class labels from model config
|
13 |
+
id2label = model.config.id2label # Mapping of indices to class names
|
14 |
+
|
15 |
# Define a function to run inference
|
16 |
def classify_image(image):
|
17 |
inputs = processor(images=image, return_tensors="pt")
|
18 |
with torch.no_grad():
|
19 |
outputs = model(**inputs)
|
20 |
logits = outputs.logits
|
21 |
+
predicted_class_idx = logits.argmax(-1).item()
|
22 |
+
|
23 |
+
# Get human-readable class label
|
24 |
+
predicted_class_name = id2label.get(predicted_class_idx, "Unknown")
|
25 |
+
|
26 |
+
return f"Predicted Class: {predicted_class_name}"
|
27 |
|
28 |
# Create a Gradio interface
|
29 |
demo = gr.Interface(fn=classify_image, inputs="image", outputs="text")
|