Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import requests
|
5 |
+
from google import genai
|
6 |
+
from google.genai import types
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
# Set page configuration
|
12 |
+
st.set_page_config(
|
13 |
+
page_title="Flaix - Financial Assistant",
|
14 |
+
page_icon="💰",
|
15 |
+
layout="centered"
|
16 |
+
)
|
17 |
+
|
18 |
+
# Initialize Gemini client
|
19 |
+
api_key = st.secrets["GOOGLE_API_KEY"]
|
20 |
+
genai.Client(api_key=api_key)
|
21 |
+
|
22 |
+
# Indian Stock Market API base configuration
|
23 |
+
INDIAN_API_KEY = st.secrets["FINANCE_KEY"]
|
24 |
+
INDIAN_API_BASE_URL = "https://stock.indianapi.in"
|
25 |
+
|
26 |
+
# Define API endpoints and their parameters
|
27 |
+
API_ENDPOINTS = {
|
28 |
+
"get_stock_details": {
|
29 |
+
"endpoint": "/stock",
|
30 |
+
"required_params": ["stock_name"],
|
31 |
+
"param_mapping": {"stock_name": "name"},
|
32 |
+
"description": "Get details for a specific stock"
|
33 |
+
},
|
34 |
+
"get_trending_stocks": {
|
35 |
+
"endpoint": "/trending",
|
36 |
+
"required_params": [],
|
37 |
+
"param_mapping": {},
|
38 |
+
"description": "Get trending stocks in the market"
|
39 |
+
},
|
40 |
+
"get_market_news": {
|
41 |
+
"endpoint": "/news",
|
42 |
+
"required_params": [],
|
43 |
+
"param_mapping": {},
|
44 |
+
"description": "Get latest stock market news"
|
45 |
+
},
|
46 |
+
"get_mutual_funds": {
|
47 |
+
"endpoint": "/mutual_funds",
|
48 |
+
"required_params": [],
|
49 |
+
"param_mapping": {},
|
50 |
+
"description": "Get mutual funds data"
|
51 |
+
},
|
52 |
+
"get_ipo_data": {
|
53 |
+
"endpoint": "/ipo",
|
54 |
+
"required_params": [],
|
55 |
+
"param_mapping": {},
|
56 |
+
"description": "Get IPO data"
|
57 |
+
},
|
58 |
+
"get_bse_most_active": {
|
59 |
+
"endpoint": "/BSE_most_active",
|
60 |
+
"required_params": [],
|
61 |
+
"param_mapping": {},
|
62 |
+
"description": "Get BSE most active stocks"
|
63 |
+
},
|
64 |
+
"get_nse_most_active": {
|
65 |
+
"endpoint": "/NSE_most_active",
|
66 |
+
"required_params": [],
|
67 |
+
"param_mapping": {},
|
68 |
+
"description": "Get NSE most active stocks"
|
69 |
+
},
|
70 |
+
"get_historical_data": {
|
71 |
+
"endpoint": "/historical_data",
|
72 |
+
"required_params": ["stock_name"],
|
73 |
+
"optional_params": ["period"],
|
74 |
+
"default_values": {"period": "1m", "filter": "default"},
|
75 |
+
"param_mapping": {},
|
76 |
+
"description": "Get historical data for a stock"
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
# Unified API call function
|
81 |
+
def call_indian_api(endpoint, params=None):
|
82 |
+
"""
|
83 |
+
Generic function to call the Indian Stock Market API
|
84 |
+
|
85 |
+
Args:
|
86 |
+
endpoint: API endpoint suffix (e.g., '/stock', '/trending')
|
87 |
+
params: Optional parameters for the API call
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
JSON response from the API
|
91 |
+
"""
|
92 |
+
url = f"{INDIAN_API_BASE_URL}{endpoint}"
|
93 |
+
headers = {"X-Api-Key": INDIAN_API_KEY}
|
94 |
+
|
95 |
+
try:
|
96 |
+
response = requests.get(url, headers=headers, params=params)
|
97 |
+
return response.json()
|
98 |
+
except Exception as e:
|
99 |
+
return {"error": str(e)}
|
100 |
+
|
101 |
+
# Function to call API by name
|
102 |
+
def call_api_by_name(api_name, **kwargs):
|
103 |
+
"""
|
104 |
+
Call an API by its name from the API_ENDPOINTS dictionary
|
105 |
+
|
106 |
+
Args:
|
107 |
+
api_name: Name of the API to call (key in API_ENDPOINTS)
|
108 |
+
**kwargs: Parameters to pass to the API
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
JSON response from the API
|
112 |
+
"""
|
113 |
+
if api_name not in API_ENDPOINTS:
|
114 |
+
return {"error": f"Unknown API: {api_name}"}
|
115 |
+
|
116 |
+
api_info = API_ENDPOINTS[api_name]
|
117 |
+
endpoint = api_info["endpoint"]
|
118 |
+
|
119 |
+
# Check required parameters
|
120 |
+
for param in api_info.get("required_params", []):
|
121 |
+
if param not in kwargs:
|
122 |
+
return {"error": f"Missing required parameter: {param}"}
|
123 |
+
|
124 |
+
# Apply parameter mapping
|
125 |
+
mapped_params = {}
|
126 |
+
for param, value in kwargs.items():
|
127 |
+
mapped_name = api_info.get("param_mapping", {}).get(param, param)
|
128 |
+
mapped_params[mapped_name] = value
|
129 |
+
|
130 |
+
# Apply default values
|
131 |
+
for param, value in api_info.get("default_values", {}).items():
|
132 |
+
if param not in mapped_params:
|
133 |
+
mapped_params[param] = value
|
134 |
+
|
135 |
+
return call_indian_api(endpoint, mapped_params)
|
136 |
+
|
137 |
+
# Improved orchestrator function
|
138 |
+
def orchestrator(query):
|
139 |
+
"""
|
140 |
+
Determines if the query requires market data and which API to call
|
141 |
+
Returns: (needs_api, api_function, params)
|
142 |
+
"""
|
143 |
+
# Create a more precise prompt for the orchestrator
|
144 |
+
orchestrator_prompt = """
|
145 |
+
You are an orchestrator for a financial assistant specialized in Indian markets. Your job is to analyze user queries and determine if they need real-time market data.
|
146 |
+
|
147 |
+
IMPORTANT: Be very precise in your analysis. Only return TRUE for "needs_api" when the query EXPLICITLY asks for current market data, stock prices, or listings.
|
148 |
+
|
149 |
+
Examples where needs_api should be TRUE:
|
150 |
+
- "Show me the most active stocks on NSE today" → get_nse_most_active
|
151 |
+
- "What is the current price of Reliance?" → get_stock_details with stock_name="Reliance"
|
152 |
+
- "Tell me about trending stocks" → get_trending_stocks
|
153 |
+
- "What are the latest IPOs?" → get_ipo_data
|
154 |
+
|
155 |
+
Examples where needs_api should be FALSE:
|
156 |
+
- "What is compound interest?"
|
157 |
+
- "How should I start investing?"
|
158 |
+
- "What are the tax benefits of PPF?"
|
159 |
+
- "Explain mutual funds to me"
|
160 |
+
|
161 |
+
Available API functions:
|
162 |
+
- get_stock_details(stock_name): Get details for a specific stock
|
163 |
+
- get_trending_stocks(): Get trending stocks in the market
|
164 |
+
- get_market_news(): Get latest stock market news
|
165 |
+
- get_mutual_funds(): Get mutual funds data
|
166 |
+
- get_ipo_data(): Get IPO data
|
167 |
+
- get_bse_most_active(): Get BSE most active stocks
|
168 |
+
- get_nse_most_active(): Get NSE most active stocks
|
169 |
+
- get_historical_data(stock_name, period="1m"): Get historical data for a stock
|
170 |
+
|
171 |
+
User query: """ + query + """
|
172 |
+
|
173 |
+
Respond in JSON format with the following structure:
|
174 |
+
{
|
175 |
+
"needs_api": true/false,
|
176 |
+
"function": "function_name_if_needed",
|
177 |
+
"params": {
|
178 |
+
"param1": "value1",
|
179 |
+
"param2": "value2"
|
180 |
+
}
|
181 |
+
}
|
182 |
+
"""
|
183 |
+
|
184 |
+
# Call Gemini API for orchestration decision
|
185 |
+
client = get_gemini_client()
|
186 |
+
|
187 |
+
# Create content for the orchestrator
|
188 |
+
contents = [
|
189 |
+
types.Content(
|
190 |
+
role="user",
|
191 |
+
parts=[
|
192 |
+
types.Part.from_text(text=orchestrator_prompt)
|
193 |
+
],
|
194 |
+
),
|
195 |
+
]
|
196 |
+
|
197 |
+
# Configure generation parameters
|
198 |
+
generate_content_config = types.GenerateContentConfig(
|
199 |
+
temperature=0.2,
|
200 |
+
top_p=0.95,
|
201 |
+
top_k=40,
|
202 |
+
max_output_tokens=500,
|
203 |
+
response_mime_type="text/plain",
|
204 |
+
)
|
205 |
+
|
206 |
+
# Generate content
|
207 |
+
response = client.models.generate_content(
|
208 |
+
model="gemini-1.5-flash",
|
209 |
+
contents=contents,
|
210 |
+
config=generate_content_config,
|
211 |
+
)
|
212 |
+
|
213 |
+
# Parse the response
|
214 |
+
try:
|
215 |
+
decision_text = response.text
|
216 |
+
# Extract JSON from the response (it might be wrapped in markdown code blocks)
|
217 |
+
if "```json" in decision_text:
|
218 |
+
json_str = decision_text.split("```json")[1].split("```")[0].strip()
|
219 |
+
elif "```" in decision_text:
|
220 |
+
json_str = decision_text.split("```")[1].strip()
|
221 |
+
else:
|
222 |
+
json_str = decision_text.strip()
|
223 |
+
|
224 |
+
decision = json.loads(json_str)
|
225 |
+
return decision
|
226 |
+
except Exception as e:
|
227 |
+
print(f"Error parsing orchestrator response: {e}")
|
228 |
+
return {"needs_api": False}
|
229 |
+
|
230 |
+
# Language setting
|
231 |
+
|
232 |
+
# Financial assistant system prompt
|
233 |
+
SYSTEM_PROMPT = f"""You are Flaix, a helpful and knowledgeable financial assistant designed specifically for Indian users. Your purpose is to improve financial literacy and provide guidance on investments in the Indian market.
|
234 |
+
|
235 |
+
Key responsibilities:
|
236 |
+
1. Explain financial concepts in simple, easy-to-understand language
|
237 |
+
2. Provide information about different investment options available in India (stocks, mutual funds, bonds, PPF, FDs, etc.)
|
238 |
+
3. Help users understand investment risks and returns
|
239 |
+
4. Explain tax implications of different investments in the Indian context
|
240 |
+
5. Guide users on how to start investing based on their goals and risk tolerance
|
241 |
+
6. Answer questions about market trends and financial news in India
|
242 |
+
"""
|
243 |
+
|
244 |
+
# Initialize session state for chat history
|
245 |
+
if "messages" not in st.session_state:
|
246 |
+
st.session_state.messages = [
|
247 |
+
{"role": "user", "content": SYSTEM_PROMPT},
|
248 |
+
{"role": "model", "content": "Hello! I am Flaix, your financial assistant. You can ask me about investments, financial planning, or any other financial topic."}
|
249 |
+
]
|
250 |
+
|
251 |
+
# App title and description
|
252 |
+
st.title("Flaix - Your Financial Assistant")
|
253 |
+
st.markdown("Ask any questions about investing, financial planning, or the Indian financial market.")
|
254 |
+
|
255 |
+
# Display chat messages
|
256 |
+
for message in st.session_state.messages:
|
257 |
+
if message["role"] == "user" and message["content"] != SYSTEM_PROMPT:
|
258 |
+
with st.chat_message("user"):
|
259 |
+
st.write(message["content"])
|
260 |
+
elif message["role"] == "model":
|
261 |
+
with st.chat_message("assistant"):
|
262 |
+
st.write(message["content"])
|
263 |
+
|
264 |
+
# Chat input
|
265 |
+
if prompt := st.chat_input("Ask me anything about finance or investing..."):
|
266 |
+
# Add user message to chat history
|
267 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
268 |
+
|
269 |
+
# Display user message
|
270 |
+
with st.chat_message("user"):
|
271 |
+
st.write(prompt)
|
272 |
+
|
273 |
+
# Display assistant response
|
274 |
+
with st.chat_message("assistant"):
|
275 |
+
message_placeholder = st.empty()
|
276 |
+
full_response = ""
|
277 |
+
|
278 |
+
try:
|
279 |
+
# First, use the orchestrator to determine if we need to call an API
|
280 |
+
decision = orchestrator(prompt)
|
281 |
+
|
282 |
+
# If we need to call an API, do so and add the result to the context
|
283 |
+
api_context = ""
|
284 |
+
if decision.get("needs_api", False):
|
285 |
+
function_name = decision.get("function", "")
|
286 |
+
params = decision.get("params", {})
|
287 |
+
|
288 |
+
message_placeholder.write("Fetching real-time market data...")
|
289 |
+
|
290 |
+
if function_name in API_ENDPOINTS:
|
291 |
+
api_result = call_api_by_name(function_name, **params)
|
292 |
+
api_context = f"\nHere is the real-time market data from the Indian Stock Market API:\n{json.dumps(api_result, indent=2)}\n\nPlease use this data to provide an informative response to the user's query."
|
293 |
+
|
294 |
+
# Get Gemini client
|
295 |
+
client = get_gemini_client()
|
296 |
+
|
297 |
+
# Prepare the user query with API context if available
|
298 |
+
user_query = prompt
|
299 |
+
if api_context:
|
300 |
+
user_query = f"{prompt}\n\n[SYSTEM NOTE: {api_context}]"
|
301 |
+
|
302 |
+
# Prepare the system message
|
303 |
+
system_message = SYSTEM_PROMPT
|
304 |
+
if len(st.session_state.messages) > 2: # If we have conversation history
|
305 |
+
# Extract previous conversation for context
|
306 |
+
conversation_history = ""
|
307 |
+
for i in range(1, min(5, len(st.session_state.messages) - 1)): # Get up to 5 previous exchanges
|
308 |
+
if st.session_state.messages[i]["role"] == "user" and st.session_state.messages[i]["content"] != SYSTEM_PROMPT:
|
309 |
+
conversation_history += f"User: {st.session_state.messages[i]['content']}\n"
|
310 |
+
elif st.session_state.messages[i]["role"] == "model":
|
311 |
+
conversation_history += f"Assistant: {st.session_state.messages[i]['content']}\n"
|
312 |
+
|
313 |
+
system_message += f"\n\nPrevious conversation:\n{conversation_history}"
|
314 |
+
|
315 |
+
# Create content for the LLM
|
316 |
+
contents = [
|
317 |
+
types.Content(
|
318 |
+
role="user",
|
319 |
+
parts=[
|
320 |
+
types.Part.from_text(text=system_message)
|
321 |
+
],
|
322 |
+
),
|
323 |
+
types.Content(
|
324 |
+
role="model",
|
325 |
+
parts=[
|
326 |
+
types.Part.from_text(text="I understand my role as Flaix, a financial assistant for Indian users. I'll provide helpful information about investing and financial planning in simple language.")
|
327 |
+
],
|
328 |
+
),
|
329 |
+
types.Content(
|
330 |
+
role="user",
|
331 |
+
parts=[
|
332 |
+
types.Part.from_text(text=user_query)
|
333 |
+
],
|
334 |
+
),
|
335 |
+
]
|
336 |
+
|
337 |
+
# Configure generation parameters
|
338 |
+
generate_content_config = types.GenerateContentConfig(
|
339 |
+
temperature=0.7,
|
340 |
+
top_p=0.95,
|
341 |
+
top_k=40,
|
342 |
+
max_output_tokens=8192,
|
343 |
+
response_mime_type="text/plain",
|
344 |
+
)
|
345 |
+
|
346 |
+
# Stream the response
|
347 |
+
response_stream = client.models.generate_content_stream(
|
348 |
+
model="gemini-1.5-flash",
|
349 |
+
contents=contents,
|
350 |
+
config=generate_content_config,
|
351 |
+
)
|
352 |
+
|
353 |
+
# Process streaming response
|
354 |
+
for chunk in response_stream:
|
355 |
+
if hasattr(chunk, 'text'):
|
356 |
+
full_response += chunk.text
|
357 |
+
message_placeholder.write(full_response + "▌")
|
358 |
+
|
359 |
+
# Final update without cursor
|
360 |
+
message_placeholder.write(full_response)
|
361 |
+
|
362 |
+
except Exception as e:
|
363 |
+
st.error(f"Error: {str(e)}")
|
364 |
+
full_response = "I'm sorry, I encountered an error. Please try again later."
|
365 |
+
message_placeholder.write(full_response)
|
366 |
+
|
367 |
+
# Add assistant response to chat history
|
368 |
+
st.session_state.messages.append({"role": "model", "content": full_response})
|