Spaces:
Sleeping
Sleeping
import numpy as np | |
import tensorflow as tf | |
import cv2 | |
import gradio as gr | |
from tensorflow import keras | |
model = keras.models.load_model('model_CNN.h5') | |
class_mapping = {1: 'Собака', 2: 'Кінь', 3: 'Слон', 4:'Метелик', | |
5: 'Курка', 6: 'Кіт', 7:'Корова', 8: 'Вівця', | |
9: 'Павук', 10: 'Білка' | |
} | |
# Створення функції для передбачення тварини | |
def predict_image(image): | |
image = cv2.resize(image, (224, 224)) | |
image = np.asarray(image) | |
image = image.astype('float32') / 255.0 | |
predictions = model.predict(np.expand_dims(image, axis=0))[0] | |
prediction = {} | |
for index, probability in enumerate(predictions) : | |
prediction[class_mapping[index+1]] = float(round(probability, 3)) | |
print(prediction) | |
return prediction | |
demo = gr.Blocks() | |
# Створення інтерфейсу Gradio | |
with demo: | |
gr.Markdown("What animal is in the picture") | |
with gr.Tab("Predict image"): | |
image_input = gr.Image(label="Upload image") | |
output = gr.Label(label="Animal predicted by neural network") | |
image_button = gr.Button("Predict") | |
image_button.click(predict_image, inputs=image_input, outputs=output) | |
demo.launch() | |