Oleg Shulyakov commited on
Commit
57256b4
·
1 Parent(s): f3a3278

Update paths

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -15,7 +15,7 @@ from apscheduler.schedulers.background import BackgroundScheduler
15
  # used for restarting the space
16
  SPACE_ID = os.environ.get("SPACE_ID")
17
  HF_TOKEN = os.environ.get("HF_TOKEN")
18
- CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
19
 
20
  # escape HTML for logging
21
  def escape(s: str) -> str:
@@ -28,7 +28,7 @@ def escape(s: str) -> str:
28
 
29
  def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
30
  imatrix_command = [
31
- "./llama.cpp/llama-imatrix",
32
  "-m", model_path,
33
  "-f", train_data_path,
34
  "-ngl", "99",
@@ -63,7 +63,7 @@ def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token:
63
  raise ValueError("You have to be logged in.")
64
 
65
  split_cmd = [
66
- "./llama.cpp/llama-gguf-split",
67
  "--split",
68
  ]
69
  if split_max_size:
@@ -185,7 +185,7 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
185
  if train_data_file:
186
  train_data_path = train_data_file.name
187
  else:
188
- train_data_path = "llama.cpp/train_data.txt" #fallback calibration dataset
189
 
190
  print(f"Training data file path: {train_data_path}")
191
 
@@ -201,12 +201,12 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
201
  quantized_gguf_path = str(Path(outdir)/quantized_gguf_name)
202
  if use_imatrix:
203
  quantise_ggml = [
204
- "./llama.cpp/llama-quantize",
205
  "--imatrix", imatrix_path, fp16, quantized_gguf_path, imatrix_q_method
206
  ]
207
  else:
208
  quantise_ggml = [
209
- "./llama.cpp/llama-quantize",
210
  fp16, quantized_gguf_path, q_method
211
  ]
212
  result = subprocess.run(quantise_ggml, shell=False, capture_output=True)
 
15
  # used for restarting the space
16
  SPACE_ID = os.environ.get("SPACE_ID")
17
  HF_TOKEN = os.environ.get("HF_TOKEN")
18
+ CONVERSION_SCRIPT = "/app/convert_hf_to_gguf.py"
19
 
20
  # escape HTML for logging
21
  def escape(s: str) -> str:
 
28
 
29
  def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
30
  imatrix_command = [
31
+ "llama-imatrix",
32
  "-m", model_path,
33
  "-f", train_data_path,
34
  "-ngl", "99",
 
63
  raise ValueError("You have to be logged in.")
64
 
65
  split_cmd = [
66
+ "llama-gguf-split",
67
  "--split",
68
  ]
69
  if split_max_size:
 
185
  if train_data_file:
186
  train_data_path = train_data_file.name
187
  else:
188
+ train_data_path = "train_data.txt" #fallback calibration dataset
189
 
190
  print(f"Training data file path: {train_data_path}")
191
 
 
201
  quantized_gguf_path = str(Path(outdir)/quantized_gguf_name)
202
  if use_imatrix:
203
  quantise_ggml = [
204
+ "llama-quantize",
205
  "--imatrix", imatrix_path, fp16, quantized_gguf_path, imatrix_q_method
206
  ]
207
  else:
208
  quantise_ggml = [
209
+ "llama-quantize",
210
  fp16, quantized_gguf_path, q_method
211
  ]
212
  result = subprocess.run(quantise_ggml, shell=False, capture_output=True)