Spaces:
Runtime error
Runtime error
Upload model.py
Browse files
model.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
from transformers import T5ForConditionalGeneration
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import L1Loss, CrossEntropyLoss
|
6 |
+
import copy
|
7 |
+
from typing import Optional, Tuple, Union
|
8 |
+
from dataclasses import dataclass
|
9 |
+
from transformers.utils import ModelOutput
|
10 |
+
|
11 |
+
|
12 |
+
@dataclass
|
13 |
+
class AnalystOutput(ModelOutput):
|
14 |
+
loss: Optional[torch.FloatTensor] = None
|
15 |
+
logits: torch.FloatTensor = None
|
16 |
+
regression_logits: torch.FloatTensor = None
|
17 |
+
classification_logits: torch.FloatTensor = None
|
18 |
+
tagging_logits: torch.FloatTensor = None
|
19 |
+
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
|
20 |
+
|
21 |
+
class ClassificationHead(nn.Module):
|
22 |
+
def __init__(self, config):
|
23 |
+
super().__init__()
|
24 |
+
self.dense = nn.Linear(config.d_model, config.d_model)
|
25 |
+
self.dropout = nn.Dropout(p=config.classifier_dropout)
|
26 |
+
self.out_proj = nn.Linear(config.d_model, config.num_labels)
|
27 |
+
|
28 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
29 |
+
hidden_states = self.dropout(hidden_states)
|
30 |
+
hidden_states = self.dense(hidden_states)
|
31 |
+
hidden_states = torch.tanh(hidden_states)
|
32 |
+
hidden_states = self.dropout(hidden_states)
|
33 |
+
hidden_states = self.out_proj(hidden_states)
|
34 |
+
return hidden_states
|
35 |
+
|
36 |
+
class Analyst(T5ForConditionalGeneration):
|
37 |
+
def __init__(self, config):
|
38 |
+
super().__init__(config)
|
39 |
+
regression_config = copy.deepcopy(config)
|
40 |
+
regression_config.num_labels = 1
|
41 |
+
self.regression_head = ClassificationHead(regression_config)
|
42 |
+
|
43 |
+
tagging_config = copy.deepcopy(config)
|
44 |
+
tagging_config.num_labels = 2
|
45 |
+
self.tagging_head = ClassificationHead(tagging_config)
|
46 |
+
|
47 |
+
self.classification_head = ClassificationHead(config)
|
48 |
+
|
49 |
+
self.post_init()
|
50 |
+
|
51 |
+
def forward(
|
52 |
+
self,
|
53 |
+
input_ids: Optional[torch.LongTensor] = None,
|
54 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
55 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
56 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
57 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
58 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
59 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
60 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
61 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
62 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
63 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
64 |
+
use_cache: Optional[bool] = None,
|
65 |
+
output_attentions: Optional[bool] = None,
|
66 |
+
output_hidden_states: Optional[bool] = None,
|
67 |
+
labels: Optional[torch.LongTensor] = None,
|
68 |
+
labels_regression: Optional[torch.FloatTensor] = None,
|
69 |
+
labels_tagging: Optional[torch.LongTensor] = None,
|
70 |
+
labels_classification: Optional[torch.LongTensor] = None,
|
71 |
+
return_dict: Optional[bool] = None,
|
72 |
+
) -> Union[Tuple[torch.FloatTensor], AnalystOutput]:
|
73 |
+
output = super().forward(
|
74 |
+
input_ids=input_ids,
|
75 |
+
attention_mask=attention_mask,
|
76 |
+
decoder_input_ids=decoder_input_ids,
|
77 |
+
decoder_attention_mask=decoder_attention_mask,
|
78 |
+
head_mask=head_mask,
|
79 |
+
decoder_head_mask=decoder_head_mask,
|
80 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
81 |
+
encoder_outputs=encoder_outputs,
|
82 |
+
past_key_values=past_key_values,
|
83 |
+
inputs_embeds=inputs_embeds,
|
84 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
85 |
+
use_cache=use_cache,
|
86 |
+
output_attentions=output_attentions,
|
87 |
+
output_hidden_states=output_hidden_states,
|
88 |
+
labels=labels,
|
89 |
+
return_dict=return_dict
|
90 |
+
)
|
91 |
+
encoder_hidden_state = output.encoder_last_hidden_state
|
92 |
+
lm_logits = output.logits
|
93 |
+
|
94 |
+
loss = output.loss
|
95 |
+
regression_logits = None
|
96 |
+
classification_logits = None
|
97 |
+
tagging_logits = None
|
98 |
+
|
99 |
+
if input_ids is not None:
|
100 |
+
eos_mask = input_ids.eq(self.config.eos_token_id).to(encoder_hidden_state.device)
|
101 |
+
batch_size, _, hidden_size = encoder_hidden_state.shape
|
102 |
+
sentence_representation = encoder_hidden_state[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :]
|
103 |
+
|
104 |
+
regression_logits = self.regression_head(sentence_representation)
|
105 |
+
classification_logits = self.classification_head(sentence_representation)
|
106 |
+
tagging_logits = self.tagging_head(encoder_hidden_state)
|
107 |
+
|
108 |
+
if labels_regression is not None:
|
109 |
+
labels_regression = labels_regression.to(lm_logits.device)
|
110 |
+
loss_fct = L1Loss()
|
111 |
+
regression_loss = loss_fct(regression_logits.squeeze(), labels_regression.squeeze())
|
112 |
+
loss += regression_loss
|
113 |
+
else:
|
114 |
+
regression_loss = None
|
115 |
+
|
116 |
+
if labels_classification is not None:
|
117 |
+
labels_classification = labels_classification.to(lm_logits.device)
|
118 |
+
loss_fct = CrossEntropyLoss()
|
119 |
+
classification_loss = loss_fct(classification_logits.view(-1, self.config.num_labels), labels_classification.squeeze())
|
120 |
+
loss += classification_loss
|
121 |
+
else:
|
122 |
+
classification_loss = None
|
123 |
+
|
124 |
+
if labels_tagging is not None:
|
125 |
+
labels_tagging = labels_tagging.to(lm_logits.device)
|
126 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
127 |
+
tagging_loss = loss_fct(tagging_logits.view(-1, tagging_logits.size(-1)), labels_tagging.view(-1))
|
128 |
+
loss += tagging_loss
|
129 |
+
else:
|
130 |
+
tagging_loss = None
|
131 |
+
|
132 |
+
if not return_dict:
|
133 |
+
output = (loss, lm_logits, regression_logits, classification_logits, tagging_logits)
|
134 |
+
return output
|
135 |
+
|
136 |
+
return AnalystOutput(
|
137 |
+
loss=loss,
|
138 |
+
logits=lm_logits,
|
139 |
+
regression_logits=regression_logits,
|
140 |
+
classification_logits=classification_logits,
|
141 |
+
tagging_logits=tagging_logits,
|
142 |
+
encoder_last_hidden_state=encoder_hidden_state
|
143 |
+
)
|