import os import gradio as gr import faiss import numpy as np import pickle from sentence_transformers import SentenceTransformer from transformers import AutoTokenizer, AutoModelForCausalLM # Load precomputed chunks and FAISS index print("Loading precomputed data...") with open("chunks.pkl", "rb") as f: chunks = pickle.load(f) index = faiss.read_index("index.faiss") # Load embedding model (for queries only) embedding_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-mpnet-base-v2") # Load Jais model and tokenizer model_name = "inceptionai/jais-13b" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # RAG function def get_response(query, k=3): query_embedding = embedding_model.encode([query]) distances, indices = index.search(np.array(query_embedding), k) retrieved_chunks = [chunks[i] for i in indices[0]] context = " ".join(retrieved_chunks) prompt = f"استنادًا إلى الوثائق التالية: {context}، أجب على السؤال: {query}" inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512) outputs = model.generate( **inputs, max_new_tokens=200, do_sample=True, temperature=0.7, top_p=0.9 ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response.split(query)[-1].strip() # Gradio interface with gr.Blocks(title="Dubai Legislation Chatbot") as demo: gr.Markdown("# Dubai Legislation Chatbot\nاسأل أي سؤال حول تشريعات دبي") chatbot = gr.Chatbot() msg = gr.Textbox(placeholder="اكتب سؤالك هنا...", rtl=True) clear = gr.Button("مسح") def user(user_message, history): return "", history + [[user_message, None]] def bot(history): user_message = history[-1][0] bot_message = get_response(user_message) history[-1][1] = bot_message return history msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( bot, chatbot, chatbot ) clear.click(lambda: None, None, chatbot, queue=False) demo.launch()