Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import faiss
|
| 4 |
+
import numpy as np
|
| 5 |
+
import pickle
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 8 |
+
|
| 9 |
+
# Load precomputed chunks and FAISS index
|
| 10 |
+
print("Loading precomputed data...")
|
| 11 |
+
with open("chunks.pkl", "rb") as f:
|
| 12 |
+
chunks = pickle.load(f)
|
| 13 |
+
index = faiss.read_index("index.faiss")
|
| 14 |
+
|
| 15 |
+
# Load embedding model (for queries only)
|
| 16 |
+
embedding_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
| 17 |
+
|
| 18 |
+
# Load Jais model and tokenizer
|
| 19 |
+
model_name = "inceptionai/jais-13b"
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 21 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 22 |
+
|
| 23 |
+
# RAG function
|
| 24 |
+
def get_response(query, k=3):
|
| 25 |
+
query_embedding = embedding_model.encode([query])
|
| 26 |
+
distances, indices = index.search(np.array(query_embedding), k)
|
| 27 |
+
retrieved_chunks = [chunks[i] for i in indices[0]]
|
| 28 |
+
context = " ".join(retrieved_chunks)
|
| 29 |
+
prompt = f"استنادًا إلى الوثائق التالية: {context}، أجب على السؤال: {query}"
|
| 30 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
| 31 |
+
outputs = model.generate(
|
| 32 |
+
**inputs,
|
| 33 |
+
max_new_tokens=200,
|
| 34 |
+
do_sample=True,
|
| 35 |
+
temperature=0.7,
|
| 36 |
+
top_p=0.9
|
| 37 |
+
)
|
| 38 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 39 |
+
return response.split(query)[-1].strip()
|
| 40 |
+
|
| 41 |
+
# Gradio interface
|
| 42 |
+
with gr.Blocks(title="Dubai Legislation Chatbot") as demo:
|
| 43 |
+
gr.Markdown("# Dubai Legislation Chatbot\nاسأل أي سؤال حول تشريعات دبي")
|
| 44 |
+
chatbot = gr.Chatbot()
|
| 45 |
+
msg = gr.Textbox(placeholder="اكتب سؤالك هنا...", rtl=True)
|
| 46 |
+
clear = gr.Button("مسح")
|
| 47 |
+
|
| 48 |
+
def user(user_message, history):
|
| 49 |
+
return "", history + [[user_message, None]]
|
| 50 |
+
|
| 51 |
+
def bot(history):
|
| 52 |
+
user_message = history[-1][0]
|
| 53 |
+
bot_message = get_response(user_message)
|
| 54 |
+
history[-1][1] = bot_message
|
| 55 |
+
return history
|
| 56 |
+
|
| 57 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
| 58 |
+
bot, chatbot, chatbot
|
| 59 |
+
)
|
| 60 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 61 |
+
|
| 62 |
+
demo.launch()
|