Spaces:
Sleeping
Sleeping
import os | |
from bs4 import BeautifulSoup | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from sentence_transformers import SentenceTransformer | |
import faiss | |
import numpy as np | |
import pickle | |
def preprocess(legislation_dir="./legislation"): | |
chunks_file = "chunks.pkl" | |
index_file = "index.faiss" | |
# Check if precomputed files already exist | |
if os.path.exists(chunks_file) and os.path.exists(index_file): | |
print("Precomputed files found. Skipping preprocessing.") | |
return | |
print("Precomputed files not found. Running preprocessing...") | |
# Load documents | |
def load_documents(directory): | |
documents = [] | |
if not os.path.exists(directory): | |
raise FileNotFoundError(f"Directory '{directory}' not found. Please upload legislation files.") | |
for filename in os.listdir(directory): | |
if filename.endswith(".html"): | |
file_path = os.path.join(directory, filename) | |
with open(file_path, "r", encoding="utf-8") as f: | |
soup = BeautifulSoup(f, "html.parser") | |
text = soup.get_text(separator=" ", strip=True) | |
documents.append(text) | |
return documents | |
documents = load_documents(legislation_dir) | |
# Split texts | |
print("Splitting documents into chunks...") | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
chunks = [] | |
for doc in documents: | |
chunks.extend(text_splitter.split_text(doc)) | |
# Create embeddings and FAISS index | |
print("Generating embeddings...") | |
embedding_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-mpnet-base-v2") | |
embeddings = embedding_model.encode(chunks, show_progress_bar=True) | |
dimension = embeddings.shape[1] | |
index = faiss.IndexFlatL2(dimension) | |
index.add(np.array(embeddings)) | |
# Save precomputed data | |
print("Saving precomputed data...") | |
with open(chunks_file, "wb") as f: | |
pickle.dump(chunks, f) | |
faiss.write_index(index, index_file) | |
print("Preprocessing complete!") | |
if __name__ == "__main__": | |
preprocess() |