Spaces:
Sleeping
Sleeping
import gradio as gr | |
import faiss | |
import numpy as np | |
import pickle | |
from sentence_transformers import SentenceTransformer | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load precomputed chunks and FAISS index | |
print("Loading precomputed data...") | |
with open("chunks.pkl", "rb") as f: | |
chunks = pickle.load(f) | |
index = faiss.read_index("index.faiss") | |
# Load embedding model (for queries only) | |
embedding_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-mpnet-base-v2") | |
# Load Jais model and tokenizer | |
model_name = "inceptionai/jais-13b" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# RAG function | |
def get_response(query, k=3): | |
query_embedding = embedding_model.encode([query]) | |
distances, indices = index.search(np.array(query_embedding), k) | |
retrieved_chunks = [chunks[i] for i in indices[0]] | |
context = " ".join(retrieved_chunks) | |
prompt = f"استنادًا إلى الوثائق التالية: {context}، أجب على السؤال: {query}" | |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512) | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=200, | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.9 | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response.split(query)[-1].strip() | |
# Gradio interface | |
with gr.Blocks(title="Dubai Legislation Chatbot") as demo: | |
gr.Markdown("# Dubai Legislation Chatbot\nاسأل أي سؤال حول تشريعات دبي") | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox(placeholder="اكتب سؤالك هنا...", rtl=True) | |
clear = gr.Button("مسح") | |
def user(user_message, history): | |
return "", history + [[user_message, None]] | |
def bot(history): | |
user_message = history[-1][0] | |
bot_message = get_response(user_message) | |
history[-1][1] = bot_message | |
return history | |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, chatbot, chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.launch() |