import os import gradio as gr import faiss import numpy as np import pickle from sentence_transformers import SentenceTransformer from transformers import AutoTokenizer, AutoModelForCausalLM HF_TOKEN = os.getenv("HF_TOKEN") if not HF_TOKEN: raise ValueError("HF_TOKEN environment variable not set. Please configure it in Space settings.") # Load precomputed chunks and FAISS index with open("chunks.pkl", "rb") as f: chunks = pickle.load(f) index = faiss.read_index("index.faiss") # Load embedding model (same as used in preprocessing) embedding_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-mpnet-base-v2") # Load Jais model and tokenizer model_name = "aubmindlab/aragpt2-base" tokenizer = AutoTokenizer.from_pretrained(model_name, token=HF_TOKEN, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, token=HF_TOKEN, trust_remote_code=True) # RAG function to retrieve and generate a response def get_response(query, k=3): query_embedding = embedding_model.encode([query]) distances, indices = index.search(np.array(query_embedding), k) retrieved_chunks = [chunks[i] for i in indices[0]] context = " ".join(retrieved_chunks) prompt = f"Based on the following documents: {context}, answer the question: {query}" inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512) outputs = model.generate( **inputs, max_new_tokens=200, do_sample=True, temperature=0.7, top_p=0.9 ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response.split(query)[-1].strip() # Gradio interface import gradio as gr # Print current Gradio version gradio_version = gr.__version__ print(f"Using Gradio version: {gradio_version}") # Load custom CSS from file css_path = "custom.css" with open(css_path, "r", encoding="utf-8") as f: custom_css = f.read() with gr.Blocks(title="المتحدث الآلي للتشريعات المحلية لإمارة دبي", css=custom_css) as demo: gr.Markdown("# فريق الذكاء الاصطناعي\nاسأل أي سؤال حول تشريعات دبي - نسخة تجريبية (تصميم وتنفيذ م. أسامة الخطيب)", elem_id="title") chatbot = gr.Chatbot(elem_id="chatbot", type="messages") msg = gr.Textbox(placeholder="اكتب سؤالك هنا...", rtl=True, elem_id="input-box") clear = gr.Button("مسح", elem_id="clear-btn") def user(user_message, history): history = history or [] history.append({"role": "user", "content": user_message}) return "", history def bot(history): user_message = history[-1]["content"] history.append({"role": "assistant", "content": get_response(user_message)}) return history msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(bot, chatbot, chatbot) clear.click(lambda: [], None, chatbot, queue=False) demo.launch(share=True)