Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
# Print current Gradio version
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import faiss
|
4 |
+
import numpy as np
|
5 |
+
import pickle
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
+
|
9 |
+
|
10 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
11 |
+
if not HF_TOKEN:
|
12 |
+
raise ValueError("HF_TOKEN environment variable not set. Please configure it in Space settings.")
|
13 |
+
|
14 |
+
|
15 |
+
# Load precomputed chunks and FAISS index
|
16 |
+
with open("chunks.pkl", "rb") as f:
|
17 |
+
chunks = pickle.load(f)
|
18 |
+
index = faiss.read_index("index.faiss")
|
19 |
+
|
20 |
+
# Load embedding model (same as used in preprocessing)
|
21 |
+
embedding_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
22 |
+
|
23 |
+
|
24 |
+
# Load Jais model and tokenizer
|
25 |
+
model_name = "aubmindlab/aragpt2-base"
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HF_TOKEN, trust_remote_code=True)
|
27 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, token=HF_TOKEN, trust_remote_code=True)
|
28 |
+
|
29 |
+
|
30 |
+
# RAG function to retrieve and generate a response
|
31 |
+
def get_response(query, k=3):
|
32 |
+
query_embedding = embedding_model.encode([query])
|
33 |
+
distances, indices = index.search(np.array(query_embedding), k)
|
34 |
+
retrieved_chunks = [chunks[i] for i in indices[0]]
|
35 |
+
context = " ".join(retrieved_chunks)
|
36 |
+
prompt = f"Based on the following documents: {context}, answer the question: {query}"
|
37 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
38 |
+
outputs = model.generate(
|
39 |
+
**inputs,
|
40 |
+
max_new_tokens=200,
|
41 |
+
do_sample=True,
|
42 |
+
temperature=0.7,
|
43 |
+
top_p=0.9
|
44 |
+
)
|
45 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
46 |
+
return response.split(query)[-1].strip()
|
47 |
+
|
48 |
+
# Gradio interface
|
49 |
+
|
50 |
import gradio as gr
|
51 |
|
52 |
# Print current Gradio version
|