Update app.py
Browse files
app.py
CHANGED
@@ -14,6 +14,7 @@ import zipfile
|
|
14 |
from torchvision import transforms, models
|
15 |
from get_models import Resnet_with_skip
|
16 |
|
|
|
17 |
def create_retrieval_figure(res):
|
18 |
fig = plt.figure(figsize=[10 * 3, 10 * 3])
|
19 |
cols = 5
|
@@ -21,22 +22,22 @@ def create_retrieval_figure(res):
|
|
21 |
ax_query = fig.add_subplot(rows, 1, 1)
|
22 |
plt.rcParams['figure.facecolor'] = 'white'
|
23 |
plt.axis('off')
|
24 |
-
ax_query.set_title('Top 10 most similar
|
25 |
names = ""
|
26 |
for i, image in zip(range(len(res)), res):
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
return fig, names
|
41 |
|
42 |
def knn_calc(image_name, query_feature, features):
|
@@ -54,12 +55,13 @@ resnet.fc = nn.Linear(num_ftrs, 13)
|
|
54 |
model = Resnet_with_skip(resnet)
|
55 |
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
56 |
model.load_state_dict(checkpoint)
|
|
|
57 |
embedding_model_test = torch.nn.Sequential(*(list(model.children())[:-1]))
|
58 |
|
59 |
-
periods_model = models.resnet101(pretrained=True)
|
60 |
-
periods_model.fc = nn.Linear(num_ftrs, 5)
|
61 |
-
periods_checkpoint = torch.load("periods.pth.tar", map_location="cpu")
|
62 |
-
periods_model.load_state_dict(periods_checkpoint)
|
63 |
|
64 |
with open('query_images_paths.pkl', 'rb') as fp:
|
65 |
query_images_paths = pickle.load(fp)
|
@@ -71,7 +73,7 @@ with open('features.pkl', 'rb') as fp:
|
|
71 |
|
72 |
model.eval()
|
73 |
transform = transforms.Compose([
|
74 |
-
transforms.Resize((
|
75 |
transforms.Grayscale(num_output_channels=3),
|
76 |
transforms.ToTensor(),
|
77 |
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
@@ -82,42 +84,41 @@ invTrans = transforms.Compose([transforms.Normalize(mean=[0., 0., 0.],
|
|
82 |
std=[1., 1., 1.]),
|
83 |
])
|
84 |
|
85 |
-
labels = ['ankh', 'anthropomorphic', 'bands', 'beetle', 'bird', 'circles', 'cross', 'duck', 'head', 'ibex', 'lion', 'sa', 'snake']
|
86 |
-
|
87 |
-
periods_labels = ["MB1", "MB2", "LB", "Iron1", 'Iron2']
|
88 |
-
periods_model.eval()
|
89 |
|
90 |
def predict(inp):
|
91 |
image_tensor = transform(inp)
|
92 |
with torch.no_grad():
|
93 |
-
classification, reconstruction = model(image_tensor.unsqueeze(0))
|
94 |
-
periods_classification = periods_model(image_tensor.unsqueeze(0))
|
95 |
-
recon_tensor = reconstruction[0].repeat(3, 1, 1)
|
96 |
-
recon_tensor = invTrans(kornia.enhance.invert(recon_tensor))
|
97 |
-
plot_recon = recon_tensor.permute(1, 2, 0).detach().numpy()
|
98 |
-
w, h = inp.size
|
99 |
-
#
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
for
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
periods_confidences = {periods_labels[i]: periods_prediction[i] for i in range(len(periods_labels))}
|
121 |
feature = embedding_model_test(image_tensor.unsqueeze(0))
|
122 |
dists = dict()
|
123 |
with torch.no_grad():
|
@@ -126,7 +127,7 @@ def predict(inp):
|
|
126 |
dists[image_name] = dist
|
127 |
res = dict(sorted(dists.items(), key=itemgetter(1)))
|
128 |
fig, names = create_retrieval_figure(res)
|
129 |
-
return
|
130 |
|
131 |
|
132 |
a = gr.Interface(fn=predict,
|
@@ -134,6 +135,7 @@ a = gr.Interface(fn=predict,
|
|
134 |
title="ArcAid: Analysis of Archaeological Artifacts using Drawings",
|
135 |
description="Easily classify artifacs, retrieve similar ones and generate drawings. "
|
136 |
"https://arxiv.org/abs/2211.09480.",
|
137 |
-
|
138 |
-
|
139 |
-
outputs=[
|
|
|
|
14 |
from torchvision import transforms, models
|
15 |
from get_models import Resnet_with_skip
|
16 |
|
17 |
+
|
18 |
def create_retrieval_figure(res):
|
19 |
fig = plt.figure(figsize=[10 * 3, 10 * 3])
|
20 |
cols = 5
|
|
|
22 |
ax_query = fig.add_subplot(rows, 1, 1)
|
23 |
plt.rcParams['figure.facecolor'] = 'white'
|
24 |
plt.axis('off')
|
25 |
+
ax_query.set_title('Top 10 most similar items', fontsize=40)
|
26 |
names = ""
|
27 |
for i, image in zip(range(len(res)), res):
|
28 |
+
if i >= 10:
|
29 |
+
break
|
30 |
+
current_image_path = image.split("/")[3]+"/"+image.split("/")[4]
|
31 |
+
archive = zipfile.ZipFile('dataset.zip', 'r')
|
32 |
+
imgfile = archive.read(current_image_path)
|
33 |
+
image = cv2.imdecode(np.frombuffer(imgfile, np.uint8), 1)
|
34 |
+
# image_resized = cv2.resize(image, (224, 224), interpolation=cv2.INTER_LINEAR)
|
35 |
+
ax = fig.add_subplot(rows, cols, i + 1)
|
36 |
+
plt.axis('off')
|
37 |
+
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
38 |
+
item_uuid = current_image_path.split("/")[1].split("_photoUUID")[0].split("itemUUID_")[1]
|
39 |
+
ax.set_title('Top {}'.format(i), fontsize=40)
|
40 |
+
names = names + "Top " + str(i) + " item UUID is " + item_uuid + "\n"
|
41 |
return fig, names
|
42 |
|
43 |
def knn_calc(image_name, query_feature, features):
|
|
|
55 |
model = Resnet_with_skip(resnet)
|
56 |
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
57 |
model.load_state_dict(checkpoint)
|
58 |
+
model.eval()
|
59 |
embedding_model_test = torch.nn.Sequential(*(list(model.children())[:-1]))
|
60 |
|
61 |
+
# periods_model = models.resnet101(pretrained=True)
|
62 |
+
# periods_model.fc = nn.Linear(num_ftrs, 5)
|
63 |
+
# periods_checkpoint = torch.load("periods.pth.tar", map_location="cpu")
|
64 |
+
# periods_model.load_state_dict(periods_checkpoint)
|
65 |
|
66 |
with open('query_images_paths.pkl', 'rb') as fp:
|
67 |
query_images_paths = pickle.load(fp)
|
|
|
73 |
|
74 |
model.eval()
|
75 |
transform = transforms.Compose([
|
76 |
+
transforms.Resize((224, 224)),
|
77 |
transforms.Grayscale(num_output_channels=3),
|
78 |
transforms.ToTensor(),
|
79 |
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
|
|
84 |
std=[1., 1., 1.]),
|
85 |
])
|
86 |
|
87 |
+
# labels = ['ankh', 'anthropomorphic', 'bands', 'beetle', 'bird', 'circles', 'cross', 'duck', 'head', 'ibex', 'lion', 'sa', 'snake']
|
88 |
+
#
|
89 |
+
# periods_labels = ["MB1", "MB2", "LB", "Iron1", 'Iron2']
|
90 |
+
# periods_model.eval()
|
91 |
|
92 |
def predict(inp):
|
93 |
image_tensor = transform(inp)
|
94 |
with torch.no_grad():
|
95 |
+
# classification, reconstruction = model(image_tensor.unsqueeze(0))
|
96 |
+
# periods_classification = periods_model(image_tensor.unsqueeze(0))
|
97 |
+
# recon_tensor = reconstruction[0].repeat(3, 1, 1)
|
98 |
+
# recon_tensor = invTrans(kornia.enhance.invert(recon_tensor))
|
99 |
+
# plot_recon = recon_tensor.permute(1, 2, 0).detach().numpy()
|
100 |
+
# w, h = inp.size
|
101 |
+
# m = nn.Sigmoid()
|
102 |
+
# y = m(classification)
|
103 |
+
# preds = []
|
104 |
+
# for sample in y:
|
105 |
+
# for i in sample:
|
106 |
+
# if i >=0.8:
|
107 |
+
# preds.append(1)
|
108 |
+
# else:
|
109 |
+
# preds.append(0)
|
110 |
+
# confidences = {}
|
111 |
+
# true_labels = ""
|
112 |
+
# for i in range(len(labels)):
|
113 |
+
# if preds[i]==1:
|
114 |
+
# if true_labels=="":
|
115 |
+
# true_labels = true_labels + labels[i]
|
116 |
+
# else:
|
117 |
+
# true_labels = true_labels + "&" + labels[i]
|
118 |
+
# confidences[true_labels] = torch.tensor(1.0)
|
119 |
+
#
|
120 |
+
# periods_prediction = torch.nn.functional.softmax(periods_classification[0], dim=0)
|
121 |
+
# periods_confidences = {periods_labels[i]: periods_prediction[i] for i in range(len(periods_labels))}
|
|
|
122 |
feature = embedding_model_test(image_tensor.unsqueeze(0))
|
123 |
dists = dict()
|
124 |
with torch.no_grad():
|
|
|
127 |
dists[image_name] = dist
|
128 |
res = dict(sorted(dists.items(), key=itemgetter(1)))
|
129 |
fig, names = create_retrieval_figure(res)
|
130 |
+
return fig, names
|
131 |
|
132 |
|
133 |
a = gr.Interface(fn=predict,
|
|
|
135 |
title="ArcAid: Analysis of Archaeological Artifacts using Drawings",
|
136 |
description="Easily classify artifacs, retrieve similar ones and generate drawings. "
|
137 |
"https://arxiv.org/abs/2211.09480.",
|
138 |
+
examples=['anth.jpg', 'beetle_snakes.jpg', 'bird.jpg', 'cross.jpg', 'ibex.jpg',
|
139 |
+
'lion.jpg', 'lion2.jpg', 'sa.jpg'],
|
140 |
+
outputs=['plot', 'text'], ).launch(share=True, enable_queue=True)
|
141 |
+
# outputs=[gr.Label(num_top_classes=3), gr.Label(num_top_classes=1), "image", 'plot', 'text'], ).launch(share=True, enable_queue=True)
|