File size: 7,517 Bytes
feaac02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import gradio as gr
import torch
import os
import kornia.filters
import torchvision.transforms.functional
import requests
from PIL import Image
from torchvision import transforms
from operator import itemgetter
import pickle
import io
from skimage.transform import resize

from utils_functions.imports import *

from util_models.resnet_with_skip import *
from util_models.densenet_with_skip import *
from util_models.glyphnet_with_skip import *


def create_retrieval_figure(res):
    fig = plt.figure(figsize=[10 * 3, 10 * 3])
    cols = 5
    rows = 2
    ax_query = fig.add_subplot(rows, 1, 1)
    plt.rcParams['figure.facecolor'] = 'white'
    plt.axis('off')
    ax_query.set_title('Top 10 most similar scarabs', fontsize=40)
    names = ""
    for i, image in zip(range(len(res)), res):
        current_image_path = image
        if i==0: continue
        if i < 11:
            image = cv2.imread(current_image_path)
            # image_resized = cv2.resize(image, (224, 224), interpolation=cv2.INTER_LINEAR)
            ax = fig.add_subplot(rows, cols, i)
            plt.axis('off')
            plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
            item_uuid = current_image_path.split("/")[4].split("_photoUUID")[0].split("itemUUID_")[1]
            ax.set_title('Top {}'.format(i), fontsize=40)
            names = names + "Top " + str(i) + " item UUID is " + item_uuid + "\n"
    # img_buf = io.BytesIO()
    # plt.savefig(img_buf, format='png')
    # im_fig = Image.open(img_buf)
    # img_buf.close()
    # return im_fig

    return fig, names

def knn_calc(image_name, query_feature, features):
    current_image_feature = features[image_name].to(device)
    criterion = torch.nn.CosineSimilarity(dim=1)
    dist = criterion(query_feature, current_image_feature).mean()
    dist = -dist.item()
    return dist


def return_all_features(model_test, query_images_paths, glyph = False):
    model_test.eval()
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model_test.to(device)
    features = dict()
    i = 0
    transform = transforms.Compose([
            transforms.RandomApply([transforms.ToPILImage(),], p=1),
            transforms.Resize((224, 224)),
            transforms.Grayscale(num_output_channels=3),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
        ])
    gray_scale = transforms.Grayscale(num_output_channels=1)
    with torch.no_grad():
        for image_path in query_images_paths:
            print(i)
            i = i + 1
            # if check_image_label(image_path, labels_dict) is not None:
            img = cv2.imread(image_path)
            img = transform(img)
            # img = transforms.Grayscale(num_output_channels=1)(img).to(device)
            img = img.unsqueeze(0).contiguous().to(device)
            if glyph:
                img = gray_scale(img)
            current_image_features = model_test(img)
            # current_image_features, _, _, _ = model_test(x1=img, x2=img)
            features[image_path] = current_image_features
            # if i % 5 == 0:
            #     print("Finished embedding of {} images".format(i))
            del current_image_features
            torch.cuda.empty_cache()
    return features


device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# device = 'cpu'

experiment = "experiment_0"
checkpoint_path = os.path.join("../shapes_classification/checkpoints/"
                               "50_50_pretrained_resnet101_experiment_0_train_images_with_drawings_batch_8_10:29:06/" +
                              "experiment_0_last_auto_model.pth.tar")
checkpoint_path = "multi_label.pth.tar"

resnet = models.resnet101(pretrained=True)
num_ftrs = resnet.fc.in_features
resnet.fc = nn.Linear(num_ftrs, 13)
model = Resnet_with_skip(resnet).to(device)
checkpoint = torch.load(checkpoint_path, map_location="cpu")
model.load_state_dict(checkpoint)
embedding_model_test = torch.nn.Sequential(*(list(model.children())[:-1]))
embedding_model_test.to(device)

periods_model = models.resnet101(pretrained=True)
periods_model.fc = nn.Linear(num_ftrs, 5)
periods_checkpoint = torch.load("periods.pth.tar", map_location="cpu")
periods_model.load_state_dict(periods_checkpoint)
periods_model.to(device)

data_dir = "../cssl_dataset/all_image_base/1/"
query_images_paths = []
for path in os.listdir(data_dir):
    query_images_paths.append(os.path.join(data_dir, path))
# features = return_all_features(embedding_model_test, query_images_paths)
# with open('features.pkl', 'wb') as fp:
#     pickle.dump(features, fp)

with open('features.pkl', 'rb') as fp:
    features = pickle.load(fp)

model.eval()
transform = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.Grayscale(num_output_channels=3),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
        ])
invTrans = transforms.Compose([transforms.Normalize(mean=[0., 0., 0.],
                                                    std=[1 / 0.5, 1 / 0.5, 1 / 0.5]),
                               transforms.Normalize(mean=[-0.5, -0.5, -0.5],
                                                    std=[1., 1., 1.]),
                               ])

labels = sorted(os.listdir("../cssl_dataset/shape_multi_label/photos"))
periods_labels = ["MB1", "MB2", "LB", "Iron1", 'Iron2']
periods_model.eval()

def predict(inp):
    image_tensor = transform(inp)
    image_tensor = image_tensor.to(device)
    with torch.no_grad():
        classification, reconstruction = model(image_tensor.unsqueeze(0))
        periods_classification = periods_model(image_tensor.unsqueeze(0))
        recon_tensor = reconstruction[0].repeat(3, 1, 1)
        recon_tensor = invTrans(kornia.enhance.invert(recon_tensor))
        plot_recon = recon_tensor.to("cpu").permute(1, 2, 0).detach().numpy()
        w, h = inp.size
        plot_recon = resize(plot_recon, (h, w))
        m = nn.Sigmoid()
        y = m(classification)
        preds = []
        for sample in y:
            for i in sample:
                if i >=0.8:
                    preds.append(1)
                else:
                    preds.append(0)
        # prediction = torch.tensor(preds).to(device)
        confidences = {}
        true_labels = ""
        for i in range(len(labels)):
            if preds[i]==1:
                if true_labels=="":
                    true_labels = true_labels + labels[i]
                else:
                    true_labels = true_labels + "&" + labels[i]
        confidences[true_labels] = torch.tensor(1.0).to(device)

        periods_prediction = torch.nn.functional.softmax(periods_classification[0], dim=0)
        periods_confidences = {periods_labels[i]: periods_prediction[i] for i in range(len(periods_labels))}
        feature = embedding_model_test(image_tensor.unsqueeze(0)).to(device)
        dists = dict()
        with torch.no_grad():
            for i, image_name in enumerate(query_images_paths):
                dist = knn_calc(image_name, feature, features)
                dists[image_name] = dist
        res = dict(sorted(dists.items(), key=itemgetter(1)))
    fig, names = create_retrieval_figure(res)
    return fig, names, plot_recon, confidences, periods_confidences


gr.Interface(fn=predict,
             inputs=gr.Image(type="pil"),
             outputs=['plot', 'text', "image", gr.Label(num_top_classes=1), gr.Label(num_top_classes=1)], ).launch(share=True)