File size: 7,517 Bytes
feaac02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import gradio as gr
import torch
import os
import kornia.filters
import torchvision.transforms.functional
import requests
from PIL import Image
from torchvision import transforms
from operator import itemgetter
import pickle
import io
from skimage.transform import resize
from utils_functions.imports import *
from util_models.resnet_with_skip import *
from util_models.densenet_with_skip import *
from util_models.glyphnet_with_skip import *
def create_retrieval_figure(res):
fig = plt.figure(figsize=[10 * 3, 10 * 3])
cols = 5
rows = 2
ax_query = fig.add_subplot(rows, 1, 1)
plt.rcParams['figure.facecolor'] = 'white'
plt.axis('off')
ax_query.set_title('Top 10 most similar scarabs', fontsize=40)
names = ""
for i, image in zip(range(len(res)), res):
current_image_path = image
if i==0: continue
if i < 11:
image = cv2.imread(current_image_path)
# image_resized = cv2.resize(image, (224, 224), interpolation=cv2.INTER_LINEAR)
ax = fig.add_subplot(rows, cols, i)
plt.axis('off')
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
item_uuid = current_image_path.split("/")[4].split("_photoUUID")[0].split("itemUUID_")[1]
ax.set_title('Top {}'.format(i), fontsize=40)
names = names + "Top " + str(i) + " item UUID is " + item_uuid + "\n"
# img_buf = io.BytesIO()
# plt.savefig(img_buf, format='png')
# im_fig = Image.open(img_buf)
# img_buf.close()
# return im_fig
return fig, names
def knn_calc(image_name, query_feature, features):
current_image_feature = features[image_name].to(device)
criterion = torch.nn.CosineSimilarity(dim=1)
dist = criterion(query_feature, current_image_feature).mean()
dist = -dist.item()
return dist
def return_all_features(model_test, query_images_paths, glyph = False):
model_test.eval()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_test.to(device)
features = dict()
i = 0
transform = transforms.Compose([
transforms.RandomApply([transforms.ToPILImage(),], p=1),
transforms.Resize((224, 224)),
transforms.Grayscale(num_output_channels=3),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
gray_scale = transforms.Grayscale(num_output_channels=1)
with torch.no_grad():
for image_path in query_images_paths:
print(i)
i = i + 1
# if check_image_label(image_path, labels_dict) is not None:
img = cv2.imread(image_path)
img = transform(img)
# img = transforms.Grayscale(num_output_channels=1)(img).to(device)
img = img.unsqueeze(0).contiguous().to(device)
if glyph:
img = gray_scale(img)
current_image_features = model_test(img)
# current_image_features, _, _, _ = model_test(x1=img, x2=img)
features[image_path] = current_image_features
# if i % 5 == 0:
# print("Finished embedding of {} images".format(i))
del current_image_features
torch.cuda.empty_cache()
return features
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# device = 'cpu'
experiment = "experiment_0"
checkpoint_path = os.path.join("../shapes_classification/checkpoints/"
"50_50_pretrained_resnet101_experiment_0_train_images_with_drawings_batch_8_10:29:06/" +
"experiment_0_last_auto_model.pth.tar")
checkpoint_path = "multi_label.pth.tar"
resnet = models.resnet101(pretrained=True)
num_ftrs = resnet.fc.in_features
resnet.fc = nn.Linear(num_ftrs, 13)
model = Resnet_with_skip(resnet).to(device)
checkpoint = torch.load(checkpoint_path, map_location="cpu")
model.load_state_dict(checkpoint)
embedding_model_test = torch.nn.Sequential(*(list(model.children())[:-1]))
embedding_model_test.to(device)
periods_model = models.resnet101(pretrained=True)
periods_model.fc = nn.Linear(num_ftrs, 5)
periods_checkpoint = torch.load("periods.pth.tar", map_location="cpu")
periods_model.load_state_dict(periods_checkpoint)
periods_model.to(device)
data_dir = "../cssl_dataset/all_image_base/1/"
query_images_paths = []
for path in os.listdir(data_dir):
query_images_paths.append(os.path.join(data_dir, path))
# features = return_all_features(embedding_model_test, query_images_paths)
# with open('features.pkl', 'wb') as fp:
# pickle.dump(features, fp)
with open('features.pkl', 'rb') as fp:
features = pickle.load(fp)
model.eval()
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.Grayscale(num_output_channels=3),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
invTrans = transforms.Compose([transforms.Normalize(mean=[0., 0., 0.],
std=[1 / 0.5, 1 / 0.5, 1 / 0.5]),
transforms.Normalize(mean=[-0.5, -0.5, -0.5],
std=[1., 1., 1.]),
])
labels = sorted(os.listdir("../cssl_dataset/shape_multi_label/photos"))
periods_labels = ["MB1", "MB2", "LB", "Iron1", 'Iron2']
periods_model.eval()
def predict(inp):
image_tensor = transform(inp)
image_tensor = image_tensor.to(device)
with torch.no_grad():
classification, reconstruction = model(image_tensor.unsqueeze(0))
periods_classification = periods_model(image_tensor.unsqueeze(0))
recon_tensor = reconstruction[0].repeat(3, 1, 1)
recon_tensor = invTrans(kornia.enhance.invert(recon_tensor))
plot_recon = recon_tensor.to("cpu").permute(1, 2, 0).detach().numpy()
w, h = inp.size
plot_recon = resize(plot_recon, (h, w))
m = nn.Sigmoid()
y = m(classification)
preds = []
for sample in y:
for i in sample:
if i >=0.8:
preds.append(1)
else:
preds.append(0)
# prediction = torch.tensor(preds).to(device)
confidences = {}
true_labels = ""
for i in range(len(labels)):
if preds[i]==1:
if true_labels=="":
true_labels = true_labels + labels[i]
else:
true_labels = true_labels + "&" + labels[i]
confidences[true_labels] = torch.tensor(1.0).to(device)
periods_prediction = torch.nn.functional.softmax(periods_classification[0], dim=0)
periods_confidences = {periods_labels[i]: periods_prediction[i] for i in range(len(periods_labels))}
feature = embedding_model_test(image_tensor.unsqueeze(0)).to(device)
dists = dict()
with torch.no_grad():
for i, image_name in enumerate(query_images_paths):
dist = knn_calc(image_name, feature, features)
dists[image_name] = dist
res = dict(sorted(dists.items(), key=itemgetter(1)))
fig, names = create_retrieval_figure(res)
return fig, names, plot_recon, confidences, periods_confidences
gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs=['plot', 'text', "image", gr.Label(num_top_classes=1), gr.Label(num_top_classes=1)], ).launch(share=True)
|