File size: 10,584 Bytes
feaac02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import kornia.filters
import scipy.ndimage
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import random



def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=dilation, groups=groups, bias=False, dilation=dilation)


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


class DoubleConv(nn.Module):
    """(convolution => [BN] => ReLU) * 2"""

    def __init__(self, in_channels, out_channels, mid_channels=None):
        super().__init__()
        if not mid_channels:
            mid_channels = out_channels
        norm_layer = nn.BatchNorm2d

        self.conv1 = nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(mid_channels)
        self.inst1 = nn.InstanceNorm2d(mid_channels)
        # self.gn1 = nn.GroupNorm(4, mid_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.inst2 = nn.InstanceNorm2d(out_channels)
        # self.gn2 = nn.GroupNorm(4, out_channels)
        self.downsample = None
        if in_channels != out_channels:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False),
                nn.BatchNorm2d(out_channels),
            )

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        # out = self.bn1(out)
        out = self.inst1(out)
        # out = self.gn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        # out = self.bn2(out)
        out = self.inst2(out)
        # out = self.gn2(out)
        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)
        return out


class Down(nn.Module):
    """Downscaling with maxpool then double conv"""

    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.maxpool_conv = nn.Sequential(
            nn.MaxPool2d(2),
            DoubleConv(in_channels, out_channels)
        )

    def forward(self, x):
        return self.maxpool_conv(x)


class Up(nn.Module):
    """Upscaling then double conv"""

    def __init__(self, in_channels, out_channels, bilinear=True):
        super().__init__()

        # if bilinear, use the normal convolutions to reduce the number of channels
        if bilinear:
            self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
            self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
        else:
            if in_channels == out_channels:
                self.up = nn.Identity()
            else:
                self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
            self.conv = DoubleConv(in_channels, out_channels)

    def forward(self, x1, x2):
        x1 = self.up(x1)
        # input is CHW
        diffY = x2.size()[2] - x1.size()[2]
        diffX = x2.size()[3] - x1.size()[3]

        x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
                        diffY // 2, diffY - diffY // 2])
        # if you have padding issues, see
        # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
        # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
        x = torch.cat([x2, x1], dim=1)
        return self.conv(x)


class OutConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(OutConv, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)

    def forward(self, x):
        return self.conv(x)

class GaussianLayer(nn.Module):
    def __init__(self):
        super(GaussianLayer, self).__init__()
        self.seq = nn.Sequential(
            # nn.ReflectionPad2d(10),
            nn.Conv2d(1, 1, 5, stride=1, padding=2, bias=False)
        )

        self.weights_init()
    def forward(self, x):
        return self.seq(x)

    def weights_init(self):
        n= np.zeros((5,5))
        n[3,3] = 1
        k = scipy.ndimage.gaussian_filter(n,sigma=1)
        for name, f in self.named_parameters():
            f.data.copy_(torch.from_numpy(k))

def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=dilation, groups=groups, bias=False, dilation=dilation)

class Decoder(nn.Module):
    def __init__(self):
        super(Decoder, self).__init__()
        self.up1 = Up(2048, 1024 // 1, False)
        self.up2 = Up(1024, 512 // 1, False)
        self.up3 = Up(512, 256 // 1, False)
        self.conv2d_2_1 = conv3x3(256, 128)
        self.gn1 = nn.GroupNorm(4, 128)
        self.instance1 = nn.InstanceNorm2d(128)
        self.up4 = Up(128, 64 // 1, False)
        self.upsample4 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
        # self.upsample4 = nn.ConvTranspose2d(64, 64, 2, stride=2)
        self.upsample4_conv = DoubleConv(64, 64, 64 // 2)
        self.up_ = Up(128, 128 // 1, False)
        self.conv2d_2_2 = conv3x3(128, 6)
        self.instance2 = nn.InstanceNorm2d(6)
        self.gn2 = nn.GroupNorm(3, 6)
        self.gaussian_blur = GaussianLayer()
        self.up5 = Up(6, 3, False)
        self.conv2d_2_3 = conv3x3(3, 1)
        self.instance3 = nn.InstanceNorm2d(1)
        self.gaussian_blur = GaussianLayer()
        self.kernel = nn.Parameter(torch.tensor(
            [[[0.0, 0.0, 0.0], [0.0, 1.0, random.uniform(-1.0, 0.0)], [0.0, 0.0, 0.0]],
             [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, random.uniform(-1.0, 0.0)]],
             [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, random.uniform(random.uniform(-1.0, 0.0), -0.0), 0.0]],
             [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [random.uniform(-1.0, 0.0), 0.0, 0.0]],
             [[0.0, 0.0, 0.0], [random.uniform(-1.0, 0.0), 1.0, 0.0], [0.0, 0.0, 0.0]],
             [[random.uniform(-1.0, 0.0), 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]],
             [[0.0, random.uniform(-1.0, 0.0), 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]],
             [[0.0, 0.0, random.uniform(-1.0, 0.0)], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]], ],
        ).unsqueeze(1))

        self.nms_conv = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False, groups=1)
        with torch.no_grad():
            self.nms_conv.weight = self.kernel.float()


class Resnet_with_skip(nn.Module):
    def __init__(self, model):
        super(Resnet_with_skip, self).__init__()
        self.model = model
        self.decoder = Decoder()

    def forward_pred(self, image):
        pred_net = self.model(image)
        return pred_net

    def forward_decode(self, image):
        identity = image

        image = self.model.conv1(image)
        image = self.model.bn1(image)
        image = self.model.relu(image)
        image1 = self.model.maxpool(image)

        image2 = self.model.layer1(image1)
        image3 = self.model.layer2(image2)
        image4 = self.model.layer3(image3)
        image5 = self.model.layer4(image4)

        reconst1 = self.decoder.up1(image5, image4)
        reconst2 = self.decoder.up2(reconst1, image3)
        reconst3 = self.decoder.up3(reconst2, image2)
        reconst = self.decoder.conv2d_2_1(reconst3)
        # reconst = self.decoder.instance1(reconst)
        reconst = self.decoder.gn1(reconst)
        reconst = F.relu(reconst)
        reconst4 = self.decoder.up4(reconst, image1)
        # reconst5 = self.decoder.upsample4(reconst4)
        reconst5 = self.decoder.upsample4(reconst4)
        # reconst5 = self.decoder.upsample4_conv(reconst4)
        reconst5 = self.decoder.up_(reconst5, image)
        # reconst5 = reconst5 + image
        reconst5 = self.decoder.conv2d_2_2(reconst5)
        reconst5 = self.decoder.instance2(reconst5)
        # reconst5 = self.decoder.gn2(reconst5)
        reconst5 = F.relu(reconst5)
        reconst = self.decoder.up5(reconst5, identity)
        reconst = self.decoder.conv2d_2_3(reconst)
        # reconst = self.decoder.instance3(reconst)
        reconst = F.relu(reconst)

        # return reconst

        blurred = self.decoder.gaussian_blur(reconst)

        gradients = kornia.filters.spatial_gradient(blurred, normalized=False)
        # Unpack the edges
        gx = gradients[:, :, 0]
        gy = gradients[:, :, 1]

        angle = torch.atan2(gy, gx)

        # Radians to Degrees
        import math
        angle = 180.0 * angle / math.pi

        # Round angle to the nearest 45 degree
        angle = torch.round(angle / 45) * 45
        nms_magnitude = self.decoder.nms_conv(blurred)
        # nms_magnitude = F.conv2d(blurred, kernel.unsqueeze(1), padding=kernel.shape[-1]//2)

        # Non-maximal suppression
        # Get the indices for both directions
        positive_idx = (angle / 45) % 8
        positive_idx = positive_idx.long()

        negative_idx = ((angle / 45) + 4) % 8
        negative_idx = negative_idx.long()

        # Apply the non-maximum suppression to the different directions
        channel_select_filtered_positive = torch.gather(nms_magnitude, 1, positive_idx)
        channel_select_filtered_negative = torch.gather(nms_magnitude, 1, negative_idx)

        channel_select_filtered = torch.stack(
            [channel_select_filtered_positive, channel_select_filtered_negative], 1
        )

        # is_max = channel_select_filtered.min(dim=1)[0] > 0.0

        # magnitude = reconst * is_max

        thresh = nn.Threshold(0.01, 0.01)
        max_matrix = channel_select_filtered.min(dim=1)[0]
        max_matrix = thresh(max_matrix)
        magnitude = torch.mul(reconst, max_matrix)
        # magnitude = torchvision.transforms.functional.invert(magnitude)
        # magnitude = self.decoder.sharpen(magnitude)
        # magnitude = self.decoder.threshold(magnitude)
        magnitude = kornia.enhance.adjust_gamma(magnitude, 2.0)
        # magnitude = F.leaky_relu(magnitude)
        return magnitude

    def forward(self, image):
        reconst = self.forward_decode(image)
        pred = self.forward_pred(image)
        return pred, reconst