File size: 5,746 Bytes
c08cf9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import pickle
from operator import itemgetter

import cv2
import gradio as gr
import kornia.filters
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
import zipfile
# from skimage.transform import resize
from torchvision import transforms, models
from get_models import Resnet_with_skip

def create_retrieval_figure(res):
    fig = plt.figure(figsize=[10 * 3, 10 * 3])
    cols = 5
    rows = 2
    ax_query = fig.add_subplot(rows, 1, 1)
    plt.rcParams['figure.facecolor'] = 'white'
    plt.axis('off')
    ax_query.set_title('Top 10 most similar scarabs', fontsize=40)
    names = ""
    for i, image in zip(range(len(res)), res):
        current_image_path = image.split("/")[3]+"/"+image.split("/")[4]
        if i==0: continue
        if i < 11:
            archive = zipfile.ZipFile('dataset.zip', 'r')
            current_image_path = current_image_path.split(".")[0] + ".gif"
            imgfile = archive.read(current_image_path)
            image = cv2.imdecode(np.frombuffer(imgfile, np.uint8), 1)
            # image_resized = cv2.resize(image, (224, 224), interpolation=cv2.INTER_LINEAR)
            ax = fig.add_subplot(rows, cols, i)
            plt.axis('off')
            plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
            item_uuid = current_image_path.split("/")[1].split("_photoUUID")[0].split("itemUUID_")[1]
            ax.set_title('Top {}'.format(i), fontsize=40)
            names = names + "Top " + str(i) + " item UUID is " + item_uuid + "\n"
    return fig, names

def knn_calc(image_name, query_feature, features):
    current_image_feature = features[image_name]
    criterion = torch.nn.CosineSimilarity(dim=1)
    dist = criterion(query_feature, current_image_feature).mean()
    dist = -dist.item()
    return dist

checkpoint_path = "multi_label.pth.tar"

resnet = models.resnet101(pretrained=True)
num_ftrs = resnet.fc.in_features
resnet.fc = nn.Linear(num_ftrs, 13)
model = Resnet_with_skip(resnet)
checkpoint = torch.load(checkpoint_path, map_location="cpu")
model.load_state_dict(checkpoint)
embedding_model_test = torch.nn.Sequential(*(list(model.children())[:-1]))

periods_model = models.resnet101(pretrained=True)
periods_model.fc = nn.Linear(num_ftrs, 5)
periods_checkpoint = torch.load("periods.pth.tar", map_location="cpu")
periods_model.load_state_dict(periods_checkpoint)

with open('query_images_paths.pkl', 'rb') as fp:
    query_images_paths = pickle.load(fp)

with open('features.pkl', 'rb') as fp:
    features = pickle.load(fp)



model.eval()
transform = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.Grayscale(num_output_channels=3),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
        ])
invTrans = transforms.Compose([transforms.Normalize(mean=[0., 0., 0.],
                                                    std=[1 / 0.5, 1 / 0.5, 1 / 0.5]),
                               transforms.Normalize(mean=[-0.5, -0.5, -0.5],
                                                    std=[1., 1., 1.]),
                               ])

labels = ['ankh', 'anthropomorphic', 'bands', 'beetle', 'bird', 'circles', 'cross', 'duck', 'head', 'ibex', 'lion', 'sa', 'snake']

periods_labels = ["MB1", "MB2", "LB", "Iron1", 'Iron2']
periods_model.eval()

def predict(inp):
    image_tensor = transform(inp)
    with torch.no_grad():
        classification, reconstruction = model(image_tensor.unsqueeze(0))
        periods_classification = periods_model(image_tensor.unsqueeze(0))
        recon_tensor = reconstruction[0].repeat(3, 1, 1)
        recon_tensor = invTrans(kornia.enhance.invert(recon_tensor))
        plot_recon = recon_tensor.permute(1, 2, 0).detach().numpy()
        w, h = inp.size
        # plot_recon = resize(plot_recon, (h, w))
        m = nn.Sigmoid()
        y = m(classification)
        preds = []
        for sample in y:
            for i in sample:
                if i >=0.8:
                    preds.append(1)
                else:
                    preds.append(0)
        confidences = {}
        true_labels = ""
        for i in range(len(labels)):
            if preds[i]==1:
                if true_labels=="":
                    true_labels = true_labels + labels[i]
                else:
                    true_labels = true_labels + "&" + labels[i]
        confidences[true_labels] = torch.tensor(1.0)

        periods_prediction = torch.nn.functional.softmax(periods_classification[0], dim=0)
        periods_confidences = {periods_labels[i]: periods_prediction[i] for i in range(len(periods_labels))}
        feature = embedding_model_test(image_tensor.unsqueeze(0))
        dists = dict()
        with torch.no_grad():
            for i, image_name in enumerate(query_images_paths):
                dist = knn_calc(image_name, feature, features)
                dists[image_name] = dist
        res = dict(sorted(dists.items(), key=itemgetter(1)))
    fig, names = create_retrieval_figure(res)
    return confidences, periods_confidences, plot_recon, fig, names


a = gr.Interface(fn=predict,
             inputs=gr.Image(type="pil"),
             title="ArcAid: Analysis of Archaeological Artifacts using Drawings",
             description="Easily classify artifacs, retrieve similar ones and generate drawings. "
                         "https://arxiv.org/abs/2211.09480.",
             # examples=['anth.jpg', 'beetle_snakes.jpg', 'bird.jpg', 'cross.jpg', 'ibex.jpg',
             #           'lion.jpg', 'lion2.jpg', 'sa.jpg'],
             outputs=[gr.Label(num_top_classes=3), gr.Label(num_top_classes=1), "image", 'plot', 'text'], ).launch(share=True, enable_queue=True)