File size: 5,668 Bytes
c6b8c55
 
 
 
 
 
 
 
 
 
 
8ff538a
 
c6b8c55
4a508f2
c6b8c55
 
 
 
 
 
 
 
 
 
 
8ff538a
c6b8c55
 
8ff538a
 
 
c6b8c55
 
 
 
8ff538a
c6b8c55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ff538a
c6b8c55
 
 
 
 
 
 
 
 
8ff538a
 
c6b8c55
 
10fb420
c6b8c55
8ff538a
 
c6b8c55
 
 
 
 
 
 
 
 
 
 
 
 
8ff538a
 
c6b8c55
 
 
 
 
 
 
 
ab29ae2
 
 
c6b8c55
8ff538a
c6b8c55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ff538a
c6b8c55
 
 
8ff538a
c6b8c55
 
 
 
 
 
 
ab29ae2
c6b8c55
 
 
 
8ff538a
 
 
0c2a598
 
ab29ae2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import pickle
from operator import itemgetter

import cv2
import gradio as gr
import kornia.filters
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
import zipfile
# from skimage.transform import resize
from torchvision import transforms, models
from get_models import Resnet_with_skip

def create_retrieval_figure(res):
    fig = plt.figure(figsize=[10 * 3, 10 * 3])
    cols = 5
    rows = 2
    ax_query = fig.add_subplot(rows, 1, 1)
    plt.rcParams['figure.facecolor'] = 'white'
    plt.axis('off')
    ax_query.set_title('Top 10 most similar scarabs', fontsize=40)
    names = ""
    for i, image in zip(range(len(res)), res):
        current_image_path = image.split("/")[3]+"/"+image.split("/")[4]
        if i==0: continue
        if i < 11:
            archive = zipfile.ZipFile('dataset.zip', 'r')
            imgfile = archive.read(current_image_path)
            image = cv2.imdecode(np.frombuffer(imgfile, np.uint8), 1)
            # image_resized = cv2.resize(image, (224, 224), interpolation=cv2.INTER_LINEAR)
            ax = fig.add_subplot(rows, cols, i)
            plt.axis('off')
            plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
            item_uuid = current_image_path.split("/")[1].split("_photoUUID")[0].split("itemUUID_")[1]
            ax.set_title('Top {}'.format(i), fontsize=40)
            names = names + "Top " + str(i) + " item UUID is " + item_uuid + "\n"
    return fig, names

def knn_calc(image_name, query_feature, features):
    current_image_feature = features[image_name]
    criterion = torch.nn.CosineSimilarity(dim=1)
    dist = criterion(query_feature, current_image_feature).mean()
    dist = -dist.item()
    return dist

checkpoint_path = "multi_label.pth.tar"

resnet = models.resnet101(pretrained=True)
num_ftrs = resnet.fc.in_features
resnet.fc = nn.Linear(num_ftrs, 13)
model = Resnet_with_skip(resnet)
checkpoint = torch.load(checkpoint_path, map_location="cpu")
model.load_state_dict(checkpoint)
embedding_model_test = torch.nn.Sequential(*(list(model.children())[:-1]))

periods_model = models.resnet101(pretrained=True)
periods_model.fc = nn.Linear(num_ftrs, 5)
periods_checkpoint = torch.load("periods.pth.tar", map_location="cpu")
periods_model.load_state_dict(periods_checkpoint)

with open('query_images_paths.pkl', 'rb') as fp:
    query_images_paths = pickle.load(fp)

with open('features.pkl', 'rb') as fp:
    features = pickle.load(fp)



model.eval()
transform = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.Grayscale(num_output_channels=3),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
        ])
invTrans = transforms.Compose([transforms.Normalize(mean=[0., 0., 0.],
                                                    std=[1 / 0.5, 1 / 0.5, 1 / 0.5]),
                               transforms.Normalize(mean=[-0.5, -0.5, -0.5],
                                                    std=[1., 1., 1.]),
                               ])

labels = ['ankh', 'anthropomorphic', 'bands', 'beetle', 'bird', 'circles', 'cross', 'duck', 'head', 'ibex', 'lion', 'sa', 'snake']

periods_labels = ["MB1", "MB2", "LB", "Iron1", 'Iron2']
periods_model.eval()

def predict(inp):
    image_tensor = transform(inp)
    with torch.no_grad():
        classification, reconstruction = model(image_tensor.unsqueeze(0))
        periods_classification = periods_model(image_tensor.unsqueeze(0))
        recon_tensor = reconstruction[0].repeat(3, 1, 1)
        recon_tensor = invTrans(kornia.enhance.invert(recon_tensor))
        plot_recon = recon_tensor.permute(1, 2, 0).detach().numpy()
        w, h = inp.size
        # plot_recon = resize(plot_recon, (h, w))
        m = nn.Sigmoid()
        y = m(classification)
        preds = []
        for sample in y:
            for i in sample:
                if i >=0.8:
                    preds.append(1)
                else:
                    preds.append(0)
        confidences = {}
        true_labels = ""
        for i in range(len(labels)):
            if preds[i]==1:
                if true_labels=="":
                    true_labels = true_labels + labels[i]
                else:
                    true_labels = true_labels + "&" + labels[i]
        confidences[true_labels] = torch.tensor(1.0)

        periods_prediction = torch.nn.functional.softmax(periods_classification[0], dim=0)
        periods_confidences = {periods_labels[i]: periods_prediction[i] for i in range(len(periods_labels))}
        feature = embedding_model_test(image_tensor.unsqueeze(0))
        dists = dict()
        with torch.no_grad():
            for i, image_name in enumerate(query_images_paths):
                dist = knn_calc(image_name, feature, features)
                dists[image_name] = dist
        res = dict(sorted(dists.items(), key=itemgetter(1)))
    fig, names = create_retrieval_figure(res)
    return confidences, periods_confidences, plot_recon, fig, names


gr.Interface(fn=predict,
             inputs=gr.Image(type="pil"),
             title="ArcAid: Analysis of Archaeological Artifacts using Drawings",
             description="Easily classify artifacs, retrieve similar ones and generate drawings. "
                         "https://arxiv.org/abs/2211.09480.",
             # examples=['anth.jpg', 'beetle_snakes.jpg', 'bird.jpg', 'cross.jpg', 'ibex.jpg',
             #           'lion.jpg', 'lion2.jpg', 'sa.jpg'],
             outputs=[gr.Label(num_top_classes=1), gr.Label(num_top_classes=1), "image", 'plot', 'text'], ).launch(share=True, enable_queue=True)