Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,930 +1,931 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
# Std Lib Imports
|
| 3 |
-
import argparse
|
| 4 |
-
import atexit
|
| 5 |
-
import json
|
| 6 |
-
import logging
|
| 7 |
-
import os
|
| 8 |
-
import signal
|
| 9 |
-
import sys
|
| 10 |
-
import time
|
| 11 |
-
import webbrowser
|
| 12 |
-
#
|
| 13 |
-
# Local Library Imports
|
| 14 |
-
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'App_Function_Libraries')))
|
| 15 |
-
from App_Function_Libraries.Book_Ingestion_Lib import ingest_folder, ingest_text_file
|
| 16 |
-
from App_Function_Libraries.Chunk_Lib import semantic_chunk_long_file#, rolling_summarize_function,
|
| 17 |
-
from App_Function_Libraries.Gradio_Related import launch_ui
|
| 18 |
-
from App_Function_Libraries.Local_LLM_Inference_Engine_Lib import cleanup_process, local_llm_function
|
| 19 |
-
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_llama, summarize_with_kobold, \
|
| 20 |
-
summarize_with_oobabooga, summarize_with_tabbyapi, summarize_with_vllm, summarize_with_local_llm
|
| 21 |
-
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openai, summarize_with_anthropic, \
|
| 22 |
-
summarize_with_cohere, summarize_with_groq, summarize_with_openrouter, summarize_with_deepseek, \
|
| 23 |
-
summarize_with_huggingface, perform_transcription, perform_summarization
|
| 24 |
-
from App_Function_Libraries.Audio_Transcription_Lib import convert_to_wav, speech_to_text
|
| 25 |
-
from App_Function_Libraries.Local_File_Processing_Lib import read_paths_from_file, process_local_file
|
| 26 |
-
from App_Function_Libraries.SQLite_DB import add_media_to_database, is_valid_url
|
| 27 |
-
from App_Function_Libraries.System_Checks_Lib import cuda_check, platform_check, check_ffmpeg
|
| 28 |
-
from App_Function_Libraries.Utils import load_and_log_configs, sanitize_filename, create_download_directory, extract_text_from_segments
|
| 29 |
-
from App_Function_Libraries.Video_DL_Ingestion_Lib import download_video, extract_video_info
|
| 30 |
-
#
|
| 31 |
-
# 3rd-Party Module Imports
|
| 32 |
-
import requests
|
| 33 |
-
# OpenAI Tokenizer support
|
| 34 |
-
#
|
| 35 |
-
# Other Tokenizers
|
| 36 |
-
#
|
| 37 |
-
#######################
|
| 38 |
-
# Logging Setup
|
| 39 |
-
#
|
| 40 |
-
log_level = "DEBUG"
|
| 41 |
-
logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s')
|
| 42 |
-
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 43 |
-
#
|
| 44 |
-
#############
|
| 45 |
-
# Global variables setup
|
| 46 |
-
custom_prompt_input = ("Above is the transcript of a video. Please read through the transcript carefully. Identify the "
|
| 47 |
-
"main topics that are discussed over the course of the transcript. Then, summarize the key points about each main "
|
| 48 |
-
"topic in bullet points. The bullet points should cover the key information conveyed about each topic in the video, "
|
| 49 |
-
"but should be much shorter than the full transcript. Please output your bullet point summary inside <bulletpoints> "
|
| 50 |
-
"tags.")
|
| 51 |
-
#
|
| 52 |
-
# Global variables
|
| 53 |
-
whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3",
|
| 54 |
-
"distil-large-v2", "distil-medium.en", "distil-small.en"]
|
| 55 |
-
server_mode = False
|
| 56 |
-
share_public = False
|
| 57 |
-
#
|
| 58 |
-
#
|
| 59 |
-
#######################
|
| 60 |
-
|
| 61 |
-
#######################
|
| 62 |
-
# Function Sections
|
| 63 |
-
#
|
| 64 |
-
abc_xyz = """
|
| 65 |
-
Database Setup
|
| 66 |
-
Config Loading
|
| 67 |
-
System Checks
|
| 68 |
-
DataBase Functions
|
| 69 |
-
Processing Paths and local file handling
|
| 70 |
-
Video Download/Handling
|
| 71 |
-
Audio Transcription
|
| 72 |
-
Diarization
|
| 73 |
-
Chunking-related Techniques & Functions
|
| 74 |
-
Tokenization-related Techniques & Functions
|
| 75 |
-
Summarizers
|
| 76 |
-
Gradio UI
|
| 77 |
-
Main
|
| 78 |
-
"""
|
| 79 |
-
#
|
| 80 |
-
#
|
| 81 |
-
#######################
|
| 82 |
-
#######################
|
| 83 |
-
#
|
| 84 |
-
# TL/DW: Too Long Didn't Watch
|
| 85 |
-
#
|
| 86 |
-
# Project originally created by https://github.com/the-crypt-keeper
|
| 87 |
-
# Modifications made by https://github.com/rmusser01
|
| 88 |
-
# All credit to the original authors, I've just glued shit together.
|
| 89 |
-
#
|
| 90 |
-
#
|
| 91 |
-
# Usage:
|
| 92 |
-
#
|
| 93 |
-
# Download Audio only from URL -> Transcribe audio:
|
| 94 |
-
# python summarize.py https://www.youtube.com/watch?v=4nd1CDZP21s`
|
| 95 |
-
#
|
| 96 |
-
# Download Audio+Video from URL -> Transcribe audio from Video:**
|
| 97 |
-
# python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s`
|
| 98 |
-
#
|
| 99 |
-
# Download Audio only from URL -> Transcribe audio -> Summarize using (`anthropic`/`cohere`/`openai`/`llama` (llama.cpp)/`ooba` (oobabooga/text-gen-webui)/`kobold` (kobold.cpp)/`tabby` (Tabbyapi)) API:**
|
| 100 |
-
# python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s -api <your choice of API>` - Make sure to put your API key into `config.txt` under the appropriate API variable
|
| 101 |
-
#
|
| 102 |
-
# Download Audio+Video from a list of videos in a text file (can be file paths or URLs) and have them all summarized:**
|
| 103 |
-
# python summarize.py ./local/file_on_your/system --api_name <API_name>`
|
| 104 |
-
#
|
| 105 |
-
# Run it as a WebApp**
|
| 106 |
-
# python summarize.py -gui` - This requires you to either stuff your API keys into the `config.txt` file, or pass them into the app every time you want to use it.
|
| 107 |
-
# Can be helpful for setting up a shared instance, but not wanting people to perform inference on your server.
|
| 108 |
-
#
|
| 109 |
-
#######################
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
#######################
|
| 113 |
-
# Random issues I've encountered and how I solved them:
|
| 114 |
-
# 1. Something about cuda nn library missing, even though cuda is installed...
|
| 115 |
-
# https://github.com/tensorflow/tensorflow/issues/54784 - Basically, installing zlib made it go away. idk.
|
| 116 |
-
# Or https://github.com/SYSTRAN/faster-whisper/issues/85
|
| 117 |
-
#
|
| 118 |
-
# 2. ERROR: Could not install packages due to an OSError: [WinError 2] The system cannot find the file specified: 'C:\\Python312\\Scripts\\dateparser-download.exe' -> 'C:\\Python312\\Scripts\\dateparser-download.exe.deleteme'
|
| 119 |
-
# Resolved through adding --user to the pip install command
|
| 120 |
-
#
|
| 121 |
-
# 3. Windows: Could not locate cudnn_ops_infer64_8.dll. Please make sure it is in your library path!
|
| 122 |
-
#
|
| 123 |
-
# 4.
|
| 124 |
-
#
|
| 125 |
-
# 5.
|
| 126 |
-
#
|
| 127 |
-
#
|
| 128 |
-
#
|
| 129 |
-
#######################
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
#######################
|
| 133 |
-
# DB Setup
|
| 134 |
-
|
| 135 |
-
# Handled by SQLite_DB.py
|
| 136 |
-
|
| 137 |
-
#######################
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
#######################
|
| 141 |
-
# Config loading
|
| 142 |
-
#
|
| 143 |
-
# 1.
|
| 144 |
-
# 2.
|
| 145 |
-
#
|
| 146 |
-
#
|
| 147 |
-
#######################
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
#######################
|
| 151 |
-
# System Startup Notice
|
| 152 |
-
#
|
| 153 |
-
|
| 154 |
-
# Dirty hack - sue me. - FIXME - fix this...
|
| 155 |
-
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
| 156 |
-
|
| 157 |
-
whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3",
|
| 158 |
-
"distil-large-v2", "distil-medium.en", "distil-small.en"]
|
| 159 |
-
source_languages = {
|
| 160 |
-
"en": "English",
|
| 161 |
-
"zh": "Chinese",
|
| 162 |
-
"de": "German",
|
| 163 |
-
"es": "Spanish",
|
| 164 |
-
"ru": "Russian",
|
| 165 |
-
"ko": "Korean",
|
| 166 |
-
"fr": "French"
|
| 167 |
-
}
|
| 168 |
-
source_language_list = [key[0] for key in source_languages.items()]
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
def print_hello():
|
| 172 |
-
print(r"""_____ _ ________ _ _
|
| 173 |
-
|_ _|| | / /| _ \| | | | _
|
| 174 |
-
| | | | / / | | | || | | |(_)
|
| 175 |
-
| | | | / / | | | || |/\| |
|
| 176 |
-
| | | |____ / / | |/ / \ /\ / _
|
| 177 |
-
\_/ \_____//_/ |___/ \/ \/ (_)
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
_ _
|
| 181 |
-
| | | |
|
| 182 |
-
| |_ ___ ___ | | ___ _ __ __ _
|
| 183 |
-
| __| / _ \ / _ \ | | / _ \ | '_ \ / _` |
|
| 184 |
-
| |_ | (_) || (_) | | || (_) || | | || (_| | _
|
| 185 |
-
\__| \___/ \___/ |_| \___/ |_| |_| \__, |( )
|
| 186 |
-
__/ ||/
|
| 187 |
-
|___/
|
| 188 |
-
_ _ _ _ _ _ _
|
| 189 |
-
| |(_) | | ( )| | | | | |
|
| 190 |
-
__| | _ __| | _ __ |/ | |_ __ __ __ _ | |_ ___ | |__
|
| 191 |
-
/ _` || | / _` || '_ \ | __| \ \ /\ / / / _` || __| / __|| '_ \
|
| 192 |
-
| (_| || || (_| || | | | | |_ \ V V / | (_| || |_ | (__ | | | |
|
| 193 |
-
\__,_||_| \__,_||_| |_| \__| \_/\_/ \__,_| \__| \___||_| |_|
|
| 194 |
-
""")
|
| 195 |
-
time.sleep(1)
|
| 196 |
-
return
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
#
|
| 200 |
-
#
|
| 201 |
-
#######################
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
#######################
|
| 205 |
-
# System Check Functions
|
| 206 |
-
#
|
| 207 |
-
# 1. platform_check()
|
| 208 |
-
# 2. cuda_check()
|
| 209 |
-
# 3. decide_cpugpu()
|
| 210 |
-
# 4. check_ffmpeg()
|
| 211 |
-
# 5. download_ffmpeg()
|
| 212 |
-
#
|
| 213 |
-
#######################
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
#######################
|
| 217 |
-
# DB Functions
|
| 218 |
-
#
|
| 219 |
-
# create_tables()
|
| 220 |
-
# add_keyword()
|
| 221 |
-
# delete_keyword()
|
| 222 |
-
# add_keyword()
|
| 223 |
-
# add_media_with_keywords()
|
| 224 |
-
# search_db()
|
| 225 |
-
# format_results()
|
| 226 |
-
# search_and_display()
|
| 227 |
-
# export_to_csv()
|
| 228 |
-
# is_valid_url()
|
| 229 |
-
# is_valid_date()
|
| 230 |
-
#
|
| 231 |
-
########################################################################################################################
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
########################################################################################################################
|
| 235 |
-
# Processing Paths and local file handling
|
| 236 |
-
#
|
| 237 |
-
# Function List
|
| 238 |
-
# 1. read_paths_from_file(file_path)
|
| 239 |
-
# 2. process_path(path)
|
| 240 |
-
# 3. process_local_file(file_path)
|
| 241 |
-
# 4. read_paths_from_file(file_path: str) -> List[str]
|
| 242 |
-
#
|
| 243 |
-
#
|
| 244 |
-
########################################################################################################################
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
#######################################################################################################################
|
| 248 |
-
# Online Article Extraction / Handling
|
| 249 |
-
#
|
| 250 |
-
# Function List
|
| 251 |
-
# 1. get_page_title(url)
|
| 252 |
-
# 2. get_article_text(url)
|
| 253 |
-
# 3. get_article_title(article_url_arg)
|
| 254 |
-
#
|
| 255 |
-
#
|
| 256 |
-
#######################################################################################################################
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
#######################################################################################################################
|
| 260 |
-
# Video Download/Handling
|
| 261 |
-
# Video-DL-Ingestion-Lib
|
| 262 |
-
#
|
| 263 |
-
# Function List
|
| 264 |
-
# 1. get_video_info(url)
|
| 265 |
-
# 2. create_download_directory(title)
|
| 266 |
-
# 3. sanitize_filename(title)
|
| 267 |
-
# 4. normalize_title(title)
|
| 268 |
-
# 5. get_youtube(video_url)
|
| 269 |
-
# 6. get_playlist_videos(playlist_url)
|
| 270 |
-
# 7. download_video(video_url, download_path, info_dict, download_video_flag)
|
| 271 |
-
# 8. save_to_file(video_urls, filename)
|
| 272 |
-
# 9. save_summary_to_file(summary, file_path)
|
| 273 |
-
# 10. process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter, download_video, download_audio, rolling_summarization, detail_level, question_box, keywords, ) # FIXME - UPDATE
|
| 274 |
-
#
|
| 275 |
-
#
|
| 276 |
-
#######################################################################################################################
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
#######################################################################################################################
|
| 280 |
-
# Audio Transcription
|
| 281 |
-
#
|
| 282 |
-
# Function List
|
| 283 |
-
# 1. convert_to_wav(video_file_path, offset=0, overwrite=False)
|
| 284 |
-
# 2. speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False)
|
| 285 |
-
#
|
| 286 |
-
#
|
| 287 |
-
#######################################################################################################################
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
#######################################################################################################################
|
| 291 |
-
# Diarization
|
| 292 |
-
#
|
| 293 |
-
# Function List 1. speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding",
|
| 294 |
-
# embedding_size=512, num_speakers=0)
|
| 295 |
-
#
|
| 296 |
-
#
|
| 297 |
-
#######################################################################################################################
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
#######################################################################################################################
|
| 301 |
-
# Chunking-related Techniques & Functions
|
| 302 |
-
#
|
| 303 |
-
#
|
| 304 |
-
# FIXME
|
| 305 |
-
#
|
| 306 |
-
#
|
| 307 |
-
#######################################################################################################################
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
#######################################################################################################################
|
| 311 |
-
# Tokenization-related Functions
|
| 312 |
-
#
|
| 313 |
-
#
|
| 314 |
-
|
| 315 |
-
# FIXME
|
| 316 |
-
|
| 317 |
-
#
|
| 318 |
-
#
|
| 319 |
-
#######################################################################################################################
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
#######################################################################################################################
|
| 323 |
-
# Website-related Techniques & Functions
|
| 324 |
-
#
|
| 325 |
-
#
|
| 326 |
-
|
| 327 |
-
#
|
| 328 |
-
#
|
| 329 |
-
#######################################################################################################################
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
#######################################################################################################################
|
| 333 |
-
# Summarizers
|
| 334 |
-
#
|
| 335 |
-
# Function List
|
| 336 |
-
# 1. extract_text_from_segments(segments: List[Dict]) -> str
|
| 337 |
-
# 2. summarize_with_openai(api_key, file_path, custom_prompt_arg)
|
| 338 |
-
# 3. summarize_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5)
|
| 339 |
-
# 4. summarize_with_cohere(api_key, file_path, model, custom_prompt_arg)
|
| 340 |
-
# 5. summarize_with_groq(api_key, file_path, model, custom_prompt_arg)
|
| 341 |
-
#
|
| 342 |
-
#################################
|
| 343 |
-
# Local Summarization
|
| 344 |
-
#
|
| 345 |
-
# Function List
|
| 346 |
-
#
|
| 347 |
-
# 1. summarize_with_local_llm(file_path, custom_prompt_arg)
|
| 348 |
-
# 2. summarize_with_llama(api_url, file_path, token, custom_prompt)
|
| 349 |
-
# 3. summarize_with_kobold(api_url, file_path, kobold_api_token, custom_prompt)
|
| 350 |
-
# 4. summarize_with_oobabooga(api_url, file_path, ooba_api_token, custom_prompt)
|
| 351 |
-
# 5. summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg)
|
| 352 |
-
# 6. summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt)
|
| 353 |
-
# 7. save_summary_to_file(summary, file_path)
|
| 354 |
-
#
|
| 355 |
-
#######################################################################################################################
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
#######################################################################################################################
|
| 359 |
-
# Summarization with Detail
|
| 360 |
-
#
|
| 361 |
-
|
| 362 |
-
# FIXME - see 'Old_Chunking_Lib.py'
|
| 363 |
-
|
| 364 |
-
#
|
| 365 |
-
#
|
| 366 |
-
#######################################################################################################################
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
#######################################################################################################################
|
| 370 |
-
# Gradio UI
|
| 371 |
-
#
|
| 372 |
-
#
|
| 373 |
-
#
|
| 374 |
-
#
|
| 375 |
-
#
|
| 376 |
-
#################################################################################################################
|
| 377 |
-
#
|
| 378 |
-
#######################################################################################################################
|
| 379 |
-
# Local LLM Setup / Running
|
| 380 |
-
#
|
| 381 |
-
# Function List
|
| 382 |
-
# 1. download_latest_llamafile(repo, asset_name_prefix, output_filename)
|
| 383 |
-
# 2. download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5)
|
| 384 |
-
# 3. verify_checksum(file_path, expected_checksum)
|
| 385 |
-
# 4. cleanup_process()
|
| 386 |
-
# 5. signal_handler(sig, frame)
|
| 387 |
-
# 6. local_llm_function()
|
| 388 |
-
# 7. launch_in_new_terminal_windows(executable, args)
|
| 389 |
-
# 8. launch_in_new_terminal_linux(executable, args)
|
| 390 |
-
# 9. launch_in_new_terminal_mac(executable, args)
|
| 391 |
-
#
|
| 392 |
-
#
|
| 393 |
-
#######################################################################################################################
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
#######################################################################################################################
|
| 397 |
-
# Helper Functions for Main() & process_url()
|
| 398 |
-
#
|
| 399 |
-
#
|
| 400 |
-
#
|
| 401 |
-
#######################################################################################################################
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
######################################################################################################################
|
| 405 |
-
# Main()
|
| 406 |
-
#
|
| 407 |
-
|
| 408 |
-
def main(input_path, api_name=None, api_key=None,
|
| 409 |
-
num_speakers=2,
|
| 410 |
-
whisper_model="small.en",
|
| 411 |
-
offset=0,
|
| 412 |
-
vad_filter=False,
|
| 413 |
-
download_video_flag=False,
|
| 414 |
-
custom_prompt=None,
|
| 415 |
-
overwrite=False,
|
| 416 |
-
rolling_summarization=False,
|
| 417 |
-
detail=0.01,
|
| 418 |
-
keywords=None,
|
| 419 |
-
llm_model=None,
|
| 420 |
-
time_based=False,
|
| 421 |
-
set_chunk_txt_by_words=False,
|
| 422 |
-
set_max_txt_chunk_words=0,
|
| 423 |
-
set_chunk_txt_by_sentences=False,
|
| 424 |
-
set_max_txt_chunk_sentences=0,
|
| 425 |
-
set_chunk_txt_by_paragraphs=False,
|
| 426 |
-
set_max_txt_chunk_paragraphs=0,
|
| 427 |
-
set_chunk_txt_by_tokens=False,
|
| 428 |
-
set_max_txt_chunk_tokens=0,
|
| 429 |
-
ingest_text_file=False,
|
| 430 |
-
chunk=False,
|
| 431 |
-
max_chunk_size=2000,
|
| 432 |
-
chunk_overlap=100,
|
| 433 |
-
chunk_unit='tokens',
|
| 434 |
-
summarize_chunks=None,
|
| 435 |
-
diarize=False
|
| 436 |
-
):
|
| 437 |
-
global detail_level_number, summary, audio_file, transcription_text, info_dict
|
| 438 |
-
|
| 439 |
-
detail_level = detail
|
| 440 |
-
|
| 441 |
-
print(f"Keywords: {keywords}")
|
| 442 |
-
|
| 443 |
-
if not input_path:
|
| 444 |
-
return []
|
| 445 |
-
|
| 446 |
-
start_time = time.monotonic()
|
| 447 |
-
paths = [input_path] if not os.path.isfile(input_path) else read_paths_from_file(input_path)
|
| 448 |
-
results = []
|
| 449 |
-
|
| 450 |
-
for path in paths:
|
| 451 |
-
try:
|
| 452 |
-
if path.startswith('http'):
|
| 453 |
-
info_dict, title = extract_video_info(path)
|
| 454 |
-
download_path = create_download_directory(title)
|
| 455 |
-
video_path = download_video(path, download_path, info_dict, download_video_flag)
|
| 456 |
-
|
| 457 |
-
if video_path:
|
| 458 |
-
if diarize:
|
| 459 |
-
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter, diarize=True)
|
| 460 |
-
transcription_text = {'audio_file': audio_file, 'transcription': segments}
|
| 461 |
-
else:
|
| 462 |
-
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter)
|
| 463 |
-
transcription_text = {'audio_file': audio_file, 'transcription': segments}
|
| 464 |
-
|
| 465 |
-
# FIXME rolling summarization
|
| 466 |
-
if rolling_summarization == True:
|
| 467 |
-
pass
|
| 468 |
-
# text = extract_text_from_segments(segments)
|
| 469 |
-
# detail = detail_level
|
| 470 |
-
# additional_instructions = custom_prompt_input
|
| 471 |
-
# chunk_text_by_words = set_chunk_txt_by_words
|
| 472 |
-
# max_words = set_max_txt_chunk_words
|
| 473 |
-
# chunk_text_by_sentences = set_chunk_txt_by_sentences
|
| 474 |
-
# max_sentences = set_max_txt_chunk_sentences
|
| 475 |
-
# chunk_text_by_paragraphs = set_chunk_txt_by_paragraphs
|
| 476 |
-
# max_paragraphs = set_max_txt_chunk_paragraphs
|
| 477 |
-
# chunk_text_by_tokens = set_chunk_txt_by_tokens
|
| 478 |
-
# max_tokens = set_max_txt_chunk_tokens
|
| 479 |
-
# # FIXME
|
| 480 |
-
# summarize_recursively = rolling_summarization
|
| 481 |
-
# verbose = False
|
| 482 |
-
# model = None
|
| 483 |
-
# summary = rolling_summarize_function(text, detail, api_name, api_key, model, custom_prompt_input,
|
| 484 |
-
# chunk_text_by_words,
|
| 485 |
-
# max_words, chunk_text_by_sentences,
|
| 486 |
-
# max_sentences, chunk_text_by_paragraphs,
|
| 487 |
-
# max_paragraphs, chunk_text_by_tokens,
|
| 488 |
-
# max_tokens, summarize_recursively, verbose
|
| 489 |
-
# )
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
elif api_name:
|
| 493 |
-
summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key)
|
| 494 |
-
else:
|
| 495 |
-
summary = None
|
| 496 |
-
|
| 497 |
-
if summary:
|
| 498 |
-
# Save the summary file in the download_path directory
|
| 499 |
-
summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt")
|
| 500 |
-
with open(summary_file_path, 'w') as file:
|
| 501 |
-
file.write(summary)
|
| 502 |
-
|
| 503 |
-
add_media_to_database(path, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model)
|
| 504 |
-
else:
|
| 505 |
-
logging.error(f"Failed to download video: {path}")
|
| 506 |
-
|
| 507 |
-
# FIXME - make sure this doesn't break ingesting multiple videos vs multiple text files
|
| 508 |
-
# FIXME - Need to update so that chunking is fully handled.
|
| 509 |
-
elif chunk and path.lower().endswith('.txt'):
|
| 510 |
-
chunks = semantic_chunk_long_file(path, max_chunk_size, chunk_overlap)
|
| 511 |
-
if chunks:
|
| 512 |
-
chunks_data = {
|
| 513 |
-
"file_path": path,
|
| 514 |
-
"chunk_unit": chunk_unit,
|
| 515 |
-
"max_chunk_size": max_chunk_size,
|
| 516 |
-
"chunk_overlap": chunk_overlap,
|
| 517 |
-
"chunks": []
|
| 518 |
-
}
|
| 519 |
-
summaries_data = {
|
| 520 |
-
"file_path": path,
|
| 521 |
-
"summarization_method": summarize_chunks,
|
| 522 |
-
"summaries": []
|
| 523 |
-
}
|
| 524 |
-
|
| 525 |
-
for i, chunk_text in enumerate(chunks):
|
| 526 |
-
chunk_info = {
|
| 527 |
-
"chunk_id": i + 1,
|
| 528 |
-
"text": chunk_text
|
| 529 |
-
}
|
| 530 |
-
chunks_data["chunks"].append(chunk_info)
|
| 531 |
-
|
| 532 |
-
if summarize_chunks:
|
| 533 |
-
summary = None
|
| 534 |
-
if summarize_chunks == 'openai':
|
| 535 |
-
summary = summarize_with_openai(api_key, chunk_text, custom_prompt)
|
| 536 |
-
elif summarize_chunks == 'anthropic':
|
| 537 |
-
summary = summarize_with_anthropic(api_key, chunk_text, custom_prompt)
|
| 538 |
-
elif summarize_chunks == 'cohere':
|
| 539 |
-
summary = summarize_with_cohere(api_key, chunk_text, custom_prompt)
|
| 540 |
-
elif summarize_chunks == 'groq':
|
| 541 |
-
summary = summarize_with_groq(api_key, chunk_text, custom_prompt)
|
| 542 |
-
elif summarize_chunks == 'local-llm':
|
| 543 |
-
summary = summarize_with_local_llm(chunk_text, custom_prompt)
|
| 544 |
-
# FIXME - Add more summarization methods as needed
|
| 545 |
-
|
| 546 |
-
if summary:
|
| 547 |
-
summary_info = {
|
| 548 |
-
"chunk_id": i + 1,
|
| 549 |
-
"summary": summary
|
| 550 |
-
}
|
| 551 |
-
summaries_data["summaries"].append(summary_info)
|
| 552 |
-
else:
|
| 553 |
-
logging.warning(f"Failed to generate summary for chunk {i + 1}")
|
| 554 |
-
|
| 555 |
-
# Save chunks to a single JSON file
|
| 556 |
-
chunks_file_path = f"{path}_chunks.json"
|
| 557 |
-
with open(chunks_file_path, 'w', encoding='utf-8') as f:
|
| 558 |
-
json.dump(chunks_data, f, ensure_ascii=False, indent=2)
|
| 559 |
-
logging.info(f"All chunks saved to {chunks_file_path}")
|
| 560 |
-
|
| 561 |
-
# Save summaries to a single JSON file (if summarization was performed)
|
| 562 |
-
if summarize_chunks:
|
| 563 |
-
summaries_file_path = f"{path}_summaries.json"
|
| 564 |
-
with open(summaries_file_path, 'w', encoding='utf-8') as f:
|
| 565 |
-
json.dump(summaries_data, f, ensure_ascii=False, indent=2)
|
| 566 |
-
logging.info(f"All summaries saved to {summaries_file_path}")
|
| 567 |
-
|
| 568 |
-
logging.info(f"File {path} chunked into {len(chunks)} parts using {chunk_unit} as the unit.")
|
| 569 |
-
else:
|
| 570 |
-
logging.error(f"Failed to chunk file {path}")
|
| 571 |
-
|
| 572 |
-
# Handle downloading of URLs from a text file or processing local video/audio files
|
| 573 |
-
else:
|
| 574 |
-
download_path, info_dict, urls_or_media_file = process_local_file(path)
|
| 575 |
-
if isinstance(urls_or_media_file, list):
|
| 576 |
-
# Text file containing URLs
|
| 577 |
-
for url in urls_or_media_file:
|
| 578 |
-
for item in urls_or_media_file:
|
| 579 |
-
if item.startswith(('http://', 'https://')):
|
| 580 |
-
info_dict, title = extract_video_info(url)
|
| 581 |
-
download_path = create_download_directory(title)
|
| 582 |
-
video_path = download_video(url, download_path, info_dict, download_video_flag)
|
| 583 |
-
|
| 584 |
-
if video_path:
|
| 585 |
-
if diarize:
|
| 586 |
-
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter, diarize=True)
|
| 587 |
-
else:
|
| 588 |
-
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter)
|
| 589 |
-
|
| 590 |
-
transcription_text = {'audio_file': audio_file, 'transcription': segments}
|
| 591 |
-
if rolling_summarization:
|
| 592 |
-
text = extract_text_from_segments(segments)
|
| 593 |
-
# FIXME
|
| 594 |
-
#summary = summarize_with_detail_openai(text, detail=detail)
|
| 595 |
-
elif api_name:
|
| 596 |
-
summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key)
|
| 597 |
-
else:
|
| 598 |
-
summary = None
|
| 599 |
-
|
| 600 |
-
if summary:
|
| 601 |
-
# Save the summary file in the download_path directory
|
| 602 |
-
summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt")
|
| 603 |
-
with open(summary_file_path, 'w') as file:
|
| 604 |
-
file.write(summary)
|
| 605 |
-
|
| 606 |
-
add_media_to_database(url, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model)
|
| 607 |
-
else:
|
| 608 |
-
logging.error(f"Failed to download video: {url}")
|
| 609 |
-
|
| 610 |
-
else:
|
| 611 |
-
# Video or audio or txt file
|
| 612 |
-
media_path = urls_or_media_file
|
| 613 |
-
|
| 614 |
-
if media_path.lower().endswith(('.txt', '.md')):
|
| 615 |
-
if media_path.lower().endswith('.txt'):
|
| 616 |
-
# Handle text file ingestion
|
| 617 |
-
result = ingest_text_file(media_path)
|
| 618 |
-
logging.info(result)
|
| 619 |
-
elif media_path.lower().endswith(('.mp4', '.avi', '.mov')):
|
| 620 |
-
if diarize:
|
| 621 |
-
audio_file, segments = perform_transcription(media_path, offset, whisper_model, vad_filter, diarize=True)
|
| 622 |
-
else:
|
| 623 |
-
audio_file, segments = perform_transcription(media_path, offset, whisper_model, vad_filter)
|
| 624 |
-
elif media_path.lower().endswith(('.wav', '.mp3', '.m4a')):
|
| 625 |
-
if diarize:
|
| 626 |
-
segments = speech_to_text(media_path, whisper_model=whisper_model, vad_filter=vad_filter, diarize=True)
|
| 627 |
-
else:
|
| 628 |
-
segments = speech_to_text(media_path, whisper_model=whisper_model, vad_filter=vad_filter)
|
| 629 |
-
else:
|
| 630 |
-
logging.error(f"Unsupported media file format: {media_path}")
|
| 631 |
-
continue
|
| 632 |
-
|
| 633 |
-
transcription_text = {'media_path': path, 'audio_file': media_path, 'transcription': segments}
|
| 634 |
-
|
| 635 |
-
# FIXME
|
| 636 |
-
if rolling_summarization:
|
| 637 |
-
# text = extract_text_from_segments(segments)
|
| 638 |
-
# summary = summarize_with_detail_openai(text, detail=detail)
|
| 639 |
-
pass
|
| 640 |
-
elif api_name:
|
| 641 |
-
summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key)
|
| 642 |
-
else:
|
| 643 |
-
summary = None
|
| 644 |
-
|
| 645 |
-
if summary:
|
| 646 |
-
# Save the summary file in the download_path directory
|
| 647 |
-
summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt")
|
| 648 |
-
with open(summary_file_path, 'w') as file:
|
| 649 |
-
file.write(summary)
|
| 650 |
-
|
| 651 |
-
add_media_to_database(path, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model)
|
| 652 |
-
|
| 653 |
-
except Exception as e:
|
| 654 |
-
logging.error(f"Error processing {path}: {str(e)}")
|
| 655 |
-
continue
|
| 656 |
-
|
| 657 |
-
return transcription_text
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
def signal_handler(sig, frame):
|
| 661 |
-
logging.info('Signal handler called with signal: %s', sig)
|
| 662 |
-
cleanup_process()
|
| 663 |
-
sys.exit(0)
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
############################## MAIN ##############################
|
| 667 |
-
#
|
| 668 |
-
#
|
| 669 |
-
|
| 670 |
-
if __name__ == "__main__":
|
| 671 |
-
# Register signal handlers
|
| 672 |
-
signal.signal(signal.SIGINT, signal_handler)
|
| 673 |
-
signal.signal(signal.SIGTERM, signal_handler)
|
| 674 |
-
|
| 675 |
-
# Logging setup
|
| 676 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 677 |
-
|
| 678 |
-
# Load Config
|
| 679 |
-
loaded_config_data = load_and_log_configs()
|
| 680 |
-
|
| 681 |
-
if loaded_config_data:
|
| 682 |
-
logging.info("Main: Configuration loaded successfully")
|
| 683 |
-
# You can access the configuration data like this:
|
| 684 |
-
# print(f"OpenAI API Key: {config_data['api_keys']['openai']}")
|
| 685 |
-
# print(f"Anthropic Model: {config_data['models']['anthropic']}")
|
| 686 |
-
# print(f"Kobold API IP: {config_data['local_apis']['kobold']['ip']}")
|
| 687 |
-
# print(f"Output Path: {config_data['output_path']}")
|
| 688 |
-
# print(f"Processing Choice: {config_data['processing_choice']}")
|
| 689 |
-
else:
|
| 690 |
-
print("Failed to load configuration")
|
| 691 |
-
|
| 692 |
-
# Print ascii_art
|
| 693 |
-
print_hello()
|
| 694 |
-
|
| 695 |
-
transcription_text = None
|
| 696 |
-
|
| 697 |
-
parser = argparse.ArgumentParser(
|
| 698 |
-
description='Transcribe and summarize videos.',
|
| 699 |
-
epilog='''
|
| 700 |
-
Sample commands:
|
| 701 |
-
1. Simple Sample command structure:
|
| 702 |
-
summarize.py <path_to_video> -api openai -k tag_one tag_two tag_three
|
| 703 |
-
|
| 704 |
-
2. Rolling Summary Sample command structure:
|
| 705 |
-
summarize.py <path_to_video> -api openai -prompt "custom_prompt_goes_here-is-appended-after-transcription" -roll -detail 0.01 -k tag_one tag_two tag_three
|
| 706 |
-
|
| 707 |
-
3. FULL Sample command structure:
|
| 708 |
-
summarize.py <path_to_video> -api openai -ns 2 -wm small.en -off 0 -vad -log INFO -prompt "custom_prompt" -overwrite -roll -detail 0.01 -k tag_one tag_two tag_three
|
| 709 |
-
|
| 710 |
-
4. Sample command structure for UI:
|
| 711 |
-
summarize.py -gui -log DEBUG
|
| 712 |
-
''',
|
| 713 |
-
formatter_class=argparse.RawTextHelpFormatter
|
| 714 |
-
)
|
| 715 |
-
parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?')
|
| 716 |
-
parser.add_argument('-v', '--video', action='store_true', help='Download the video instead of just the audio')
|
| 717 |
-
parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)')
|
| 718 |
-
parser.add_argument('-key', '--api_key', type=str, help='API key for summarization (optional)')
|
| 719 |
-
parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)')
|
| 720 |
-
parser.add_argument('-wm', '--whisper_model', type=str, default='small',
|
| 721 |
-
help='Whisper model (default: small)| Options: tiny.en, tiny, base.en, base, small.en, small, medium.en, '
|
| 722 |
-
'medium, large-v1, large-v2, large-v3, large, distil-large-v2, distil-medium.en, '
|
| 723 |
-
'distil-small.en')
|
| 724 |
-
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)')
|
| 725 |
-
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter')
|
| 726 |
-
parser.add_argument('-log', '--log_level', type=str, default='INFO',
|
| 727 |
-
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)')
|
| 728 |
-
parser.add_argument('-gui', '--user_interface', action='store_true', default=True, help="Launch the Gradio user interface")
|
| 729 |
-
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode')
|
| 730 |
-
parser.add_argument('-prompt', '--custom_prompt', type=str,
|
| 731 |
-
help='Pass in a custom prompt to be used in place of the existing one.\n (Probably should just '
|
| 732 |
-
'modify the script itself...)')
|
| 733 |
-
parser.add_argument('-overwrite', '--overwrite', action='store_true', help='Overwrite existing files')
|
| 734 |
-
parser.add_argument('-roll', '--rolling_summarization', action='store_true', help='Enable rolling summarization')
|
| 735 |
-
parser.add_argument('-detail', '--detail_level', type=float, help='Mandatory if rolling summarization is enabled, '
|
| 736 |
-
'defines the chunk size.\n Default is 0.01(lots '
|
| 737 |
-
'of chunks) -> 1.00 (few chunks)\n Currently '
|
| 738 |
-
'only OpenAI works. ',
|
| 739 |
-
default=0.01, )
|
| 740 |
-
parser.add_argument('-model', '--llm_model', type=str, default='',
|
| 741 |
-
help='Model to use for LLM summarization (only used for vLLM/TabbyAPI)')
|
| 742 |
-
parser.add_argument('-k', '--keywords', nargs='+', default=['cli_ingest_no_tag'],
|
| 743 |
-
help='Keywords for tagging the media, can use multiple separated by spaces (default: cli_ingest_no_tag)')
|
| 744 |
-
parser.add_argument('--log_file', type=str, help='Where to save logfile (non-default)')
|
| 745 |
-
parser.add_argument('--local_llm', action='store_true',
|
| 746 |
-
help="Use a local LLM from the script(Downloads llamafile from github and 'mistral-7b-instruct-v0.2.Q8' - 8GB model from Huggingface)")
|
| 747 |
-
parser.add_argument('--server_mode', action='store_true',
|
| 748 |
-
help='Run in server mode (This exposes the GUI/Server to the network)')
|
| 749 |
-
parser.add_argument('--share_public', type=int, default=7860,
|
| 750 |
-
help="This will use Gradio's built-in ngrok tunneling to share the server publicly on the internet. Specify the port to use (default: 7860)")
|
| 751 |
-
parser.add_argument('--port', type=int, default=7860, help='Port to run the server on')
|
| 752 |
-
parser.add_argument('--ingest_text_file', action='store_true',
|
| 753 |
-
help='Ingest .txt files as content instead of treating them as URL lists')
|
| 754 |
-
parser.add_argument('--text_title', type=str, help='Title for the text file being ingested')
|
| 755 |
-
parser.add_argument('--text_author', type=str, help='Author of the text file being ingested')
|
| 756 |
-
parser.add_argument('--diarize', action='store_true', help='Enable speaker diarization')
|
| 757 |
-
# parser.add_argument('--offload', type=int, default=20, help='Numbers of layers to offload to GPU for Llamafile usage')
|
| 758 |
-
# parser.add_argument('-o', '--output_path', type=str, help='Path to save the output file')
|
| 759 |
-
|
| 760 |
-
args = parser.parse_args()
|
| 761 |
-
|
| 762 |
-
# Set Chunking values/variables
|
| 763 |
-
set_chunk_txt_by_words = False
|
| 764 |
-
set_max_txt_chunk_words = 0
|
| 765 |
-
set_chunk_txt_by_sentences = False
|
| 766 |
-
set_max_txt_chunk_sentences = 0
|
| 767 |
-
set_chunk_txt_by_paragraphs = False
|
| 768 |
-
set_max_txt_chunk_paragraphs = 0
|
| 769 |
-
set_chunk_txt_by_tokens = False
|
| 770 |
-
set_max_txt_chunk_tokens = 0
|
| 771 |
-
|
| 772 |
-
if args.share_public:
|
| 773 |
-
share_public = args.share_public
|
| 774 |
-
else:
|
| 775 |
-
share_public = None
|
| 776 |
-
if args.server_mode:
|
| 777 |
-
|
| 778 |
-
server_mode = args.server_mode
|
| 779 |
-
else:
|
| 780 |
-
server_mode = None
|
| 781 |
-
if args.server_mode is True:
|
| 782 |
-
server_mode = True
|
| 783 |
-
if args.port:
|
| 784 |
-
server_port = args.port
|
| 785 |
-
else:
|
| 786 |
-
server_port = None
|
| 787 |
-
|
| 788 |
-
########## Logging setup
|
| 789 |
-
logger = logging.getLogger()
|
| 790 |
-
logger.setLevel(getattr(logging, args.log_level))
|
| 791 |
-
|
| 792 |
-
# Create console handler
|
| 793 |
-
console_handler = logging.StreamHandler()
|
| 794 |
-
console_handler.setLevel(getattr(logging, args.log_level))
|
| 795 |
-
console_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
| 796 |
-
console_handler.setFormatter(console_formatter)
|
| 797 |
-
|
| 798 |
-
if args.log_file:
|
| 799 |
-
# Create file handler
|
| 800 |
-
file_handler = logging.FileHandler(args.log_file)
|
| 801 |
-
file_handler.setLevel(getattr(logging, args.log_level))
|
| 802 |
-
file_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
| 803 |
-
file_handler.setFormatter(file_formatter)
|
| 804 |
-
logger.addHandler(file_handler)
|
| 805 |
-
logger.info(f"Log file created at: {args.log_file}")
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
|
| 818 |
-
|
| 819 |
-
|
| 820 |
-
|
| 821 |
-
|
| 822 |
-
|
| 823 |
-
|
| 824 |
-
|
| 825 |
-
|
| 826 |
-
|
| 827 |
-
|
| 828 |
-
|
| 829 |
-
|
| 830 |
-
|
| 831 |
-
|
| 832 |
-
|
| 833 |
-
|
| 834 |
-
|
| 835 |
-
|
| 836 |
-
|
| 837 |
-
|
| 838 |
-
|
| 839 |
-
|
| 840 |
-
|
| 841 |
-
|
| 842 |
-
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
|
| 846 |
-
|
| 847 |
-
|
| 848 |
-
|
| 849 |
-
|
| 850 |
-
|
| 851 |
-
|
| 852 |
-
|
| 853 |
-
|
| 854 |
-
|
| 855 |
-
|
| 856 |
-
|
| 857 |
-
|
| 858 |
-
|
| 859 |
-
|
| 860 |
-
logging.
|
| 861 |
-
|
| 862 |
-
|
| 863 |
-
|
| 864 |
-
|
| 865 |
-
|
| 866 |
-
|
| 867 |
-
|
| 868 |
-
|
| 869 |
-
|
| 870 |
-
|
| 871 |
-
|
| 872 |
-
|
| 873 |
-
|
| 874 |
-
|
| 875 |
-
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
|
| 879 |
-
|
| 880 |
-
|
| 881 |
-
|
| 882 |
-
#
|
| 883 |
-
#
|
| 884 |
-
#
|
| 885 |
-
# logging.info('MAIN:
|
| 886 |
-
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
logging.info('MAIN:
|
| 890 |
-
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
|
| 898 |
-
|
| 899 |
-
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
|
| 904 |
-
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
|
| 913 |
-
|
| 914 |
-
|
| 915 |
-
|
| 916 |
-
|
| 917 |
-
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
|
| 921 |
-
|
| 922 |
-
|
| 923 |
-
|
| 924 |
-
|
| 925 |
-
|
| 926 |
-
logging.error(
|
| 927 |
-
|
| 928 |
-
|
| 929 |
-
|
| 930 |
-
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# Std Lib Imports
|
| 3 |
+
import argparse
|
| 4 |
+
import atexit
|
| 5 |
+
import json
|
| 6 |
+
import logging
|
| 7 |
+
import os
|
| 8 |
+
import signal
|
| 9 |
+
import sys
|
| 10 |
+
import time
|
| 11 |
+
import webbrowser
|
| 12 |
+
#
|
| 13 |
+
# Local Library Imports
|
| 14 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'App_Function_Libraries')))
|
| 15 |
+
from App_Function_Libraries.Book_Ingestion_Lib import ingest_folder, ingest_text_file
|
| 16 |
+
from App_Function_Libraries.Chunk_Lib import semantic_chunk_long_file#, rolling_summarize_function,
|
| 17 |
+
from App_Function_Libraries.Gradio_Related import launch_ui
|
| 18 |
+
from App_Function_Libraries.Local_LLM_Inference_Engine_Lib import cleanup_process, local_llm_function
|
| 19 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_llama, summarize_with_kobold, \
|
| 20 |
+
summarize_with_oobabooga, summarize_with_tabbyapi, summarize_with_vllm, summarize_with_local_llm
|
| 21 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openai, summarize_with_anthropic, \
|
| 22 |
+
summarize_with_cohere, summarize_with_groq, summarize_with_openrouter, summarize_with_deepseek, \
|
| 23 |
+
summarize_with_huggingface, perform_transcription, perform_summarization
|
| 24 |
+
from App_Function_Libraries.Audio_Transcription_Lib import convert_to_wav, speech_to_text
|
| 25 |
+
from App_Function_Libraries.Local_File_Processing_Lib import read_paths_from_file, process_local_file
|
| 26 |
+
from App_Function_Libraries.SQLite_DB import add_media_to_database, is_valid_url
|
| 27 |
+
from App_Function_Libraries.System_Checks_Lib import cuda_check, platform_check, check_ffmpeg
|
| 28 |
+
from App_Function_Libraries.Utils import load_and_log_configs, sanitize_filename, create_download_directory, extract_text_from_segments
|
| 29 |
+
from App_Function_Libraries.Video_DL_Ingestion_Lib import download_video, extract_video_info
|
| 30 |
+
#
|
| 31 |
+
# 3rd-Party Module Imports
|
| 32 |
+
import requests
|
| 33 |
+
# OpenAI Tokenizer support
|
| 34 |
+
#
|
| 35 |
+
# Other Tokenizers
|
| 36 |
+
#
|
| 37 |
+
#######################
|
| 38 |
+
# Logging Setup
|
| 39 |
+
#
|
| 40 |
+
log_level = "DEBUG"
|
| 41 |
+
logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s')
|
| 42 |
+
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 43 |
+
#
|
| 44 |
+
#############
|
| 45 |
+
# Global variables setup
|
| 46 |
+
#custom_prompt_input = ("Above is the transcript of a video. Please read through the transcript carefully. Identify the "
|
| 47 |
+
"main topics that are discussed over the course of the transcript. Then, summarize the key points about each main "
|
| 48 |
+
"topic in bullet points. The bullet points should cover the key information conveyed about each topic in the video, "
|
| 49 |
+
"but should be much shorter than the full transcript. Please output your bullet point summary inside <bulletpoints> "
|
| 50 |
+
"tags.")
|
| 51 |
+
#
|
| 52 |
+
# Global variables
|
| 53 |
+
whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3",
|
| 54 |
+
"distil-large-v2", "distil-medium.en", "distil-small.en"]
|
| 55 |
+
server_mode = False
|
| 56 |
+
share_public = False
|
| 57 |
+
#
|
| 58 |
+
#
|
| 59 |
+
#######################
|
| 60 |
+
|
| 61 |
+
#######################
|
| 62 |
+
# Function Sections
|
| 63 |
+
#
|
| 64 |
+
abc_xyz = """
|
| 65 |
+
Database Setup
|
| 66 |
+
Config Loading
|
| 67 |
+
System Checks
|
| 68 |
+
DataBase Functions
|
| 69 |
+
Processing Paths and local file handling
|
| 70 |
+
Video Download/Handling
|
| 71 |
+
Audio Transcription
|
| 72 |
+
Diarization
|
| 73 |
+
Chunking-related Techniques & Functions
|
| 74 |
+
Tokenization-related Techniques & Functions
|
| 75 |
+
Summarizers
|
| 76 |
+
Gradio UI
|
| 77 |
+
Main
|
| 78 |
+
"""
|
| 79 |
+
#
|
| 80 |
+
#
|
| 81 |
+
#######################
|
| 82 |
+
#######################
|
| 83 |
+
#
|
| 84 |
+
# TL/DW: Too Long Didn't Watch
|
| 85 |
+
#
|
| 86 |
+
# Project originally created by https://github.com/the-crypt-keeper
|
| 87 |
+
# Modifications made by https://github.com/rmusser01
|
| 88 |
+
# All credit to the original authors, I've just glued shit together.
|
| 89 |
+
#
|
| 90 |
+
#
|
| 91 |
+
# Usage:
|
| 92 |
+
#
|
| 93 |
+
# Download Audio only from URL -> Transcribe audio:
|
| 94 |
+
# python summarize.py https://www.youtube.com/watch?v=4nd1CDZP21s`
|
| 95 |
+
#
|
| 96 |
+
# Download Audio+Video from URL -> Transcribe audio from Video:**
|
| 97 |
+
# python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s`
|
| 98 |
+
#
|
| 99 |
+
# Download Audio only from URL -> Transcribe audio -> Summarize using (`anthropic`/`cohere`/`openai`/`llama` (llama.cpp)/`ooba` (oobabooga/text-gen-webui)/`kobold` (kobold.cpp)/`tabby` (Tabbyapi)) API:**
|
| 100 |
+
# python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s -api <your choice of API>` - Make sure to put your API key into `config.txt` under the appropriate API variable
|
| 101 |
+
#
|
| 102 |
+
# Download Audio+Video from a list of videos in a text file (can be file paths or URLs) and have them all summarized:**
|
| 103 |
+
# python summarize.py ./local/file_on_your/system --api_name <API_name>`
|
| 104 |
+
#
|
| 105 |
+
# Run it as a WebApp**
|
| 106 |
+
# python summarize.py -gui` - This requires you to either stuff your API keys into the `config.txt` file, or pass them into the app every time you want to use it.
|
| 107 |
+
# Can be helpful for setting up a shared instance, but not wanting people to perform inference on your server.
|
| 108 |
+
#
|
| 109 |
+
#######################
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
#######################
|
| 113 |
+
# Random issues I've encountered and how I solved them:
|
| 114 |
+
# 1. Something about cuda nn library missing, even though cuda is installed...
|
| 115 |
+
# https://github.com/tensorflow/tensorflow/issues/54784 - Basically, installing zlib made it go away. idk.
|
| 116 |
+
# Or https://github.com/SYSTRAN/faster-whisper/issues/85
|
| 117 |
+
#
|
| 118 |
+
# 2. ERROR: Could not install packages due to an OSError: [WinError 2] The system cannot find the file specified: 'C:\\Python312\\Scripts\\dateparser-download.exe' -> 'C:\\Python312\\Scripts\\dateparser-download.exe.deleteme'
|
| 119 |
+
# Resolved through adding --user to the pip install command
|
| 120 |
+
#
|
| 121 |
+
# 3. Windows: Could not locate cudnn_ops_infer64_8.dll. Please make sure it is in your library path!
|
| 122 |
+
#
|
| 123 |
+
# 4.
|
| 124 |
+
#
|
| 125 |
+
# 5.
|
| 126 |
+
#
|
| 127 |
+
#
|
| 128 |
+
#
|
| 129 |
+
#######################
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
#######################
|
| 133 |
+
# DB Setup
|
| 134 |
+
|
| 135 |
+
# Handled by SQLite_DB.py
|
| 136 |
+
|
| 137 |
+
#######################
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
#######################
|
| 141 |
+
# Config loading
|
| 142 |
+
#
|
| 143 |
+
# 1.
|
| 144 |
+
# 2.
|
| 145 |
+
#
|
| 146 |
+
#
|
| 147 |
+
#######################
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
#######################
|
| 151 |
+
# System Startup Notice
|
| 152 |
+
#
|
| 153 |
+
|
| 154 |
+
# Dirty hack - sue me. - FIXME - fix this...
|
| 155 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
| 156 |
+
|
| 157 |
+
whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3",
|
| 158 |
+
"distil-large-v2", "distil-medium.en", "distil-small.en"]
|
| 159 |
+
source_languages = {
|
| 160 |
+
"en": "English",
|
| 161 |
+
"zh": "Chinese",
|
| 162 |
+
"de": "German",
|
| 163 |
+
"es": "Spanish",
|
| 164 |
+
"ru": "Russian",
|
| 165 |
+
"ko": "Korean",
|
| 166 |
+
"fr": "French"
|
| 167 |
+
}
|
| 168 |
+
source_language_list = [key[0] for key in source_languages.items()]
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def print_hello():
|
| 172 |
+
print(r"""_____ _ ________ _ _
|
| 173 |
+
|_ _|| | / /| _ \| | | | _
|
| 174 |
+
| | | | / / | | | || | | |(_)
|
| 175 |
+
| | | | / / | | | || |/\| |
|
| 176 |
+
| | | |____ / / | |/ / \ /\ / _
|
| 177 |
+
\_/ \_____//_/ |___/ \/ \/ (_)
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
_ _
|
| 181 |
+
| | | |
|
| 182 |
+
| |_ ___ ___ | | ___ _ __ __ _
|
| 183 |
+
| __| / _ \ / _ \ | | / _ \ | '_ \ / _` |
|
| 184 |
+
| |_ | (_) || (_) | | || (_) || | | || (_| | _
|
| 185 |
+
\__| \___/ \___/ |_| \___/ |_| |_| \__, |( )
|
| 186 |
+
__/ ||/
|
| 187 |
+
|___/
|
| 188 |
+
_ _ _ _ _ _ _
|
| 189 |
+
| |(_) | | ( )| | | | | |
|
| 190 |
+
__| | _ __| | _ __ |/ | |_ __ __ __ _ | |_ ___ | |__
|
| 191 |
+
/ _` || | / _` || '_ \ | __| \ \ /\ / / / _` || __| / __|| '_ \
|
| 192 |
+
| (_| || || (_| || | | | | |_ \ V V / | (_| || |_ | (__ | | | |
|
| 193 |
+
\__,_||_| \__,_||_| |_| \__| \_/\_/ \__,_| \__| \___||_| |_|
|
| 194 |
+
""")
|
| 195 |
+
time.sleep(1)
|
| 196 |
+
return
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
#
|
| 200 |
+
#
|
| 201 |
+
#######################
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
#######################
|
| 205 |
+
# System Check Functions
|
| 206 |
+
#
|
| 207 |
+
# 1. platform_check()
|
| 208 |
+
# 2. cuda_check()
|
| 209 |
+
# 3. decide_cpugpu()
|
| 210 |
+
# 4. check_ffmpeg()
|
| 211 |
+
# 5. download_ffmpeg()
|
| 212 |
+
#
|
| 213 |
+
#######################
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
#######################
|
| 217 |
+
# DB Functions
|
| 218 |
+
#
|
| 219 |
+
# create_tables()
|
| 220 |
+
# add_keyword()
|
| 221 |
+
# delete_keyword()
|
| 222 |
+
# add_keyword()
|
| 223 |
+
# add_media_with_keywords()
|
| 224 |
+
# search_db()
|
| 225 |
+
# format_results()
|
| 226 |
+
# search_and_display()
|
| 227 |
+
# export_to_csv()
|
| 228 |
+
# is_valid_url()
|
| 229 |
+
# is_valid_date()
|
| 230 |
+
#
|
| 231 |
+
########################################################################################################################
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
########################################################################################################################
|
| 235 |
+
# Processing Paths and local file handling
|
| 236 |
+
#
|
| 237 |
+
# Function List
|
| 238 |
+
# 1. read_paths_from_file(file_path)
|
| 239 |
+
# 2. process_path(path)
|
| 240 |
+
# 3. process_local_file(file_path)
|
| 241 |
+
# 4. read_paths_from_file(file_path: str) -> List[str]
|
| 242 |
+
#
|
| 243 |
+
#
|
| 244 |
+
########################################################################################################################
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
#######################################################################################################################
|
| 248 |
+
# Online Article Extraction / Handling
|
| 249 |
+
#
|
| 250 |
+
# Function List
|
| 251 |
+
# 1. get_page_title(url)
|
| 252 |
+
# 2. get_article_text(url)
|
| 253 |
+
# 3. get_article_title(article_url_arg)
|
| 254 |
+
#
|
| 255 |
+
#
|
| 256 |
+
#######################################################################################################################
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
#######################################################################################################################
|
| 260 |
+
# Video Download/Handling
|
| 261 |
+
# Video-DL-Ingestion-Lib
|
| 262 |
+
#
|
| 263 |
+
# Function List
|
| 264 |
+
# 1. get_video_info(url)
|
| 265 |
+
# 2. create_download_directory(title)
|
| 266 |
+
# 3. sanitize_filename(title)
|
| 267 |
+
# 4. normalize_title(title)
|
| 268 |
+
# 5. get_youtube(video_url)
|
| 269 |
+
# 6. get_playlist_videos(playlist_url)
|
| 270 |
+
# 7. download_video(video_url, download_path, info_dict, download_video_flag)
|
| 271 |
+
# 8. save_to_file(video_urls, filename)
|
| 272 |
+
# 9. save_summary_to_file(summary, file_path)
|
| 273 |
+
# 10. process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter, download_video, download_audio, rolling_summarization, detail_level, question_box, keywords, ) # FIXME - UPDATE
|
| 274 |
+
#
|
| 275 |
+
#
|
| 276 |
+
#######################################################################################################################
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
#######################################################################################################################
|
| 280 |
+
# Audio Transcription
|
| 281 |
+
#
|
| 282 |
+
# Function List
|
| 283 |
+
# 1. convert_to_wav(video_file_path, offset=0, overwrite=False)
|
| 284 |
+
# 2. speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False)
|
| 285 |
+
#
|
| 286 |
+
#
|
| 287 |
+
#######################################################################################################################
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
#######################################################################################################################
|
| 291 |
+
# Diarization
|
| 292 |
+
#
|
| 293 |
+
# Function List 1. speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding",
|
| 294 |
+
# embedding_size=512, num_speakers=0)
|
| 295 |
+
#
|
| 296 |
+
#
|
| 297 |
+
#######################################################################################################################
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
#######################################################################################################################
|
| 301 |
+
# Chunking-related Techniques & Functions
|
| 302 |
+
#
|
| 303 |
+
#
|
| 304 |
+
# FIXME
|
| 305 |
+
#
|
| 306 |
+
#
|
| 307 |
+
#######################################################################################################################
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
#######################################################################################################################
|
| 311 |
+
# Tokenization-related Functions
|
| 312 |
+
#
|
| 313 |
+
#
|
| 314 |
+
|
| 315 |
+
# FIXME
|
| 316 |
+
|
| 317 |
+
#
|
| 318 |
+
#
|
| 319 |
+
#######################################################################################################################
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
#######################################################################################################################
|
| 323 |
+
# Website-related Techniques & Functions
|
| 324 |
+
#
|
| 325 |
+
#
|
| 326 |
+
|
| 327 |
+
#
|
| 328 |
+
#
|
| 329 |
+
#######################################################################################################################
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
#######################################################################################################################
|
| 333 |
+
# Summarizers
|
| 334 |
+
#
|
| 335 |
+
# Function List
|
| 336 |
+
# 1. extract_text_from_segments(segments: List[Dict]) -> str
|
| 337 |
+
# 2. summarize_with_openai(api_key, file_path, custom_prompt_arg)
|
| 338 |
+
# 3. summarize_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5)
|
| 339 |
+
# 4. summarize_with_cohere(api_key, file_path, model, custom_prompt_arg)
|
| 340 |
+
# 5. summarize_with_groq(api_key, file_path, model, custom_prompt_arg)
|
| 341 |
+
#
|
| 342 |
+
#################################
|
| 343 |
+
# Local Summarization
|
| 344 |
+
#
|
| 345 |
+
# Function List
|
| 346 |
+
#
|
| 347 |
+
# 1. summarize_with_local_llm(file_path, custom_prompt_arg)
|
| 348 |
+
# 2. summarize_with_llama(api_url, file_path, token, custom_prompt)
|
| 349 |
+
# 3. summarize_with_kobold(api_url, file_path, kobold_api_token, custom_prompt)
|
| 350 |
+
# 4. summarize_with_oobabooga(api_url, file_path, ooba_api_token, custom_prompt)
|
| 351 |
+
# 5. summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg)
|
| 352 |
+
# 6. summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt)
|
| 353 |
+
# 7. save_summary_to_file(summary, file_path)
|
| 354 |
+
#
|
| 355 |
+
#######################################################################################################################
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
#######################################################################################################################
|
| 359 |
+
# Summarization with Detail
|
| 360 |
+
#
|
| 361 |
+
|
| 362 |
+
# FIXME - see 'Old_Chunking_Lib.py'
|
| 363 |
+
|
| 364 |
+
#
|
| 365 |
+
#
|
| 366 |
+
#######################################################################################################################
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
#######################################################################################################################
|
| 370 |
+
# Gradio UI
|
| 371 |
+
#
|
| 372 |
+
#
|
| 373 |
+
#
|
| 374 |
+
#
|
| 375 |
+
#
|
| 376 |
+
#################################################################################################################
|
| 377 |
+
#
|
| 378 |
+
#######################################################################################################################
|
| 379 |
+
# Local LLM Setup / Running
|
| 380 |
+
#
|
| 381 |
+
# Function List
|
| 382 |
+
# 1. download_latest_llamafile(repo, asset_name_prefix, output_filename)
|
| 383 |
+
# 2. download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5)
|
| 384 |
+
# 3. verify_checksum(file_path, expected_checksum)
|
| 385 |
+
# 4. cleanup_process()
|
| 386 |
+
# 5. signal_handler(sig, frame)
|
| 387 |
+
# 6. local_llm_function()
|
| 388 |
+
# 7. launch_in_new_terminal_windows(executable, args)
|
| 389 |
+
# 8. launch_in_new_terminal_linux(executable, args)
|
| 390 |
+
# 9. launch_in_new_terminal_mac(executable, args)
|
| 391 |
+
#
|
| 392 |
+
#
|
| 393 |
+
#######################################################################################################################
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
#######################################################################################################################
|
| 397 |
+
# Helper Functions for Main() & process_url()
|
| 398 |
+
#
|
| 399 |
+
#
|
| 400 |
+
#
|
| 401 |
+
#######################################################################################################################
|
| 402 |
+
|
| 403 |
+
|
| 404 |
+
######################################################################################################################
|
| 405 |
+
# Main()
|
| 406 |
+
#
|
| 407 |
+
|
| 408 |
+
def main(input_path, api_name=None, api_key=None,
|
| 409 |
+
num_speakers=2,
|
| 410 |
+
whisper_model="small.en",
|
| 411 |
+
offset=0,
|
| 412 |
+
vad_filter=False,
|
| 413 |
+
download_video_flag=False,
|
| 414 |
+
custom_prompt=None,
|
| 415 |
+
overwrite=False,
|
| 416 |
+
rolling_summarization=False,
|
| 417 |
+
detail=0.01,
|
| 418 |
+
keywords=None,
|
| 419 |
+
llm_model=None,
|
| 420 |
+
time_based=False,
|
| 421 |
+
set_chunk_txt_by_words=False,
|
| 422 |
+
set_max_txt_chunk_words=0,
|
| 423 |
+
set_chunk_txt_by_sentences=False,
|
| 424 |
+
set_max_txt_chunk_sentences=0,
|
| 425 |
+
set_chunk_txt_by_paragraphs=False,
|
| 426 |
+
set_max_txt_chunk_paragraphs=0,
|
| 427 |
+
set_chunk_txt_by_tokens=False,
|
| 428 |
+
set_max_txt_chunk_tokens=0,
|
| 429 |
+
ingest_text_file=False,
|
| 430 |
+
chunk=False,
|
| 431 |
+
max_chunk_size=2000,
|
| 432 |
+
chunk_overlap=100,
|
| 433 |
+
chunk_unit='tokens',
|
| 434 |
+
summarize_chunks=None,
|
| 435 |
+
diarize=False
|
| 436 |
+
):
|
| 437 |
+
global detail_level_number, summary, audio_file, transcription_text, info_dict
|
| 438 |
+
|
| 439 |
+
detail_level = detail
|
| 440 |
+
|
| 441 |
+
print(f"Keywords: {keywords}")
|
| 442 |
+
|
| 443 |
+
if not input_path:
|
| 444 |
+
return []
|
| 445 |
+
|
| 446 |
+
start_time = time.monotonic()
|
| 447 |
+
paths = [input_path] if not os.path.isfile(input_path) else read_paths_from_file(input_path)
|
| 448 |
+
results = []
|
| 449 |
+
|
| 450 |
+
for path in paths:
|
| 451 |
+
try:
|
| 452 |
+
if path.startswith('http'):
|
| 453 |
+
info_dict, title = extract_video_info(path)
|
| 454 |
+
download_path = create_download_directory(title)
|
| 455 |
+
video_path = download_video(path, download_path, info_dict, download_video_flag)
|
| 456 |
+
|
| 457 |
+
if video_path:
|
| 458 |
+
if diarize:
|
| 459 |
+
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter, diarize=True)
|
| 460 |
+
transcription_text = {'audio_file': audio_file, 'transcription': segments}
|
| 461 |
+
else:
|
| 462 |
+
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter)
|
| 463 |
+
transcription_text = {'audio_file': audio_file, 'transcription': segments}
|
| 464 |
+
|
| 465 |
+
# FIXME rolling summarization
|
| 466 |
+
if rolling_summarization == True:
|
| 467 |
+
pass
|
| 468 |
+
# text = extract_text_from_segments(segments)
|
| 469 |
+
# detail = detail_level
|
| 470 |
+
# additional_instructions = custom_prompt_input
|
| 471 |
+
# chunk_text_by_words = set_chunk_txt_by_words
|
| 472 |
+
# max_words = set_max_txt_chunk_words
|
| 473 |
+
# chunk_text_by_sentences = set_chunk_txt_by_sentences
|
| 474 |
+
# max_sentences = set_max_txt_chunk_sentences
|
| 475 |
+
# chunk_text_by_paragraphs = set_chunk_txt_by_paragraphs
|
| 476 |
+
# max_paragraphs = set_max_txt_chunk_paragraphs
|
| 477 |
+
# chunk_text_by_tokens = set_chunk_txt_by_tokens
|
| 478 |
+
# max_tokens = set_max_txt_chunk_tokens
|
| 479 |
+
# # FIXME
|
| 480 |
+
# summarize_recursively = rolling_summarization
|
| 481 |
+
# verbose = False
|
| 482 |
+
# model = None
|
| 483 |
+
# summary = rolling_summarize_function(text, detail, api_name, api_key, model, custom_prompt_input,
|
| 484 |
+
# chunk_text_by_words,
|
| 485 |
+
# max_words, chunk_text_by_sentences,
|
| 486 |
+
# max_sentences, chunk_text_by_paragraphs,
|
| 487 |
+
# max_paragraphs, chunk_text_by_tokens,
|
| 488 |
+
# max_tokens, summarize_recursively, verbose
|
| 489 |
+
# )
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
elif api_name:
|
| 493 |
+
summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key)
|
| 494 |
+
else:
|
| 495 |
+
summary = None
|
| 496 |
+
|
| 497 |
+
if summary:
|
| 498 |
+
# Save the summary file in the download_path directory
|
| 499 |
+
summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt")
|
| 500 |
+
with open(summary_file_path, 'w') as file:
|
| 501 |
+
file.write(summary)
|
| 502 |
+
|
| 503 |
+
add_media_to_database(path, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model)
|
| 504 |
+
else:
|
| 505 |
+
logging.error(f"Failed to download video: {path}")
|
| 506 |
+
|
| 507 |
+
# FIXME - make sure this doesn't break ingesting multiple videos vs multiple text files
|
| 508 |
+
# FIXME - Need to update so that chunking is fully handled.
|
| 509 |
+
elif chunk and path.lower().endswith('.txt'):
|
| 510 |
+
chunks = semantic_chunk_long_file(path, max_chunk_size, chunk_overlap)
|
| 511 |
+
if chunks:
|
| 512 |
+
chunks_data = {
|
| 513 |
+
"file_path": path,
|
| 514 |
+
"chunk_unit": chunk_unit,
|
| 515 |
+
"max_chunk_size": max_chunk_size,
|
| 516 |
+
"chunk_overlap": chunk_overlap,
|
| 517 |
+
"chunks": []
|
| 518 |
+
}
|
| 519 |
+
summaries_data = {
|
| 520 |
+
"file_path": path,
|
| 521 |
+
"summarization_method": summarize_chunks,
|
| 522 |
+
"summaries": []
|
| 523 |
+
}
|
| 524 |
+
|
| 525 |
+
for i, chunk_text in enumerate(chunks):
|
| 526 |
+
chunk_info = {
|
| 527 |
+
"chunk_id": i + 1,
|
| 528 |
+
"text": chunk_text
|
| 529 |
+
}
|
| 530 |
+
chunks_data["chunks"].append(chunk_info)
|
| 531 |
+
|
| 532 |
+
if summarize_chunks:
|
| 533 |
+
summary = None
|
| 534 |
+
if summarize_chunks == 'openai':
|
| 535 |
+
summary = summarize_with_openai(api_key, chunk_text, custom_prompt)
|
| 536 |
+
elif summarize_chunks == 'anthropic':
|
| 537 |
+
summary = summarize_with_anthropic(api_key, chunk_text, custom_prompt)
|
| 538 |
+
elif summarize_chunks == 'cohere':
|
| 539 |
+
summary = summarize_with_cohere(api_key, chunk_text, custom_prompt)
|
| 540 |
+
elif summarize_chunks == 'groq':
|
| 541 |
+
summary = summarize_with_groq(api_key, chunk_text, custom_prompt)
|
| 542 |
+
elif summarize_chunks == 'local-llm':
|
| 543 |
+
summary = summarize_with_local_llm(chunk_text, custom_prompt)
|
| 544 |
+
# FIXME - Add more summarization methods as needed
|
| 545 |
+
|
| 546 |
+
if summary:
|
| 547 |
+
summary_info = {
|
| 548 |
+
"chunk_id": i + 1,
|
| 549 |
+
"summary": summary
|
| 550 |
+
}
|
| 551 |
+
summaries_data["summaries"].append(summary_info)
|
| 552 |
+
else:
|
| 553 |
+
logging.warning(f"Failed to generate summary for chunk {i + 1}")
|
| 554 |
+
|
| 555 |
+
# Save chunks to a single JSON file
|
| 556 |
+
chunks_file_path = f"{path}_chunks.json"
|
| 557 |
+
with open(chunks_file_path, 'w', encoding='utf-8') as f:
|
| 558 |
+
json.dump(chunks_data, f, ensure_ascii=False, indent=2)
|
| 559 |
+
logging.info(f"All chunks saved to {chunks_file_path}")
|
| 560 |
+
|
| 561 |
+
# Save summaries to a single JSON file (if summarization was performed)
|
| 562 |
+
if summarize_chunks:
|
| 563 |
+
summaries_file_path = f"{path}_summaries.json"
|
| 564 |
+
with open(summaries_file_path, 'w', encoding='utf-8') as f:
|
| 565 |
+
json.dump(summaries_data, f, ensure_ascii=False, indent=2)
|
| 566 |
+
logging.info(f"All summaries saved to {summaries_file_path}")
|
| 567 |
+
|
| 568 |
+
logging.info(f"File {path} chunked into {len(chunks)} parts using {chunk_unit} as the unit.")
|
| 569 |
+
else:
|
| 570 |
+
logging.error(f"Failed to chunk file {path}")
|
| 571 |
+
|
| 572 |
+
# Handle downloading of URLs from a text file or processing local video/audio files
|
| 573 |
+
else:
|
| 574 |
+
download_path, info_dict, urls_or_media_file = process_local_file(path)
|
| 575 |
+
if isinstance(urls_or_media_file, list):
|
| 576 |
+
# Text file containing URLs
|
| 577 |
+
for url in urls_or_media_file:
|
| 578 |
+
for item in urls_or_media_file:
|
| 579 |
+
if item.startswith(('http://', 'https://')):
|
| 580 |
+
info_dict, title = extract_video_info(url)
|
| 581 |
+
download_path = create_download_directory(title)
|
| 582 |
+
video_path = download_video(url, download_path, info_dict, download_video_flag)
|
| 583 |
+
|
| 584 |
+
if video_path:
|
| 585 |
+
if diarize:
|
| 586 |
+
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter, diarize=True)
|
| 587 |
+
else:
|
| 588 |
+
audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter)
|
| 589 |
+
|
| 590 |
+
transcription_text = {'audio_file': audio_file, 'transcription': segments}
|
| 591 |
+
if rolling_summarization:
|
| 592 |
+
text = extract_text_from_segments(segments)
|
| 593 |
+
# FIXME
|
| 594 |
+
#summary = summarize_with_detail_openai(text, detail=detail)
|
| 595 |
+
elif api_name:
|
| 596 |
+
summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key)
|
| 597 |
+
else:
|
| 598 |
+
summary = None
|
| 599 |
+
|
| 600 |
+
if summary:
|
| 601 |
+
# Save the summary file in the download_path directory
|
| 602 |
+
summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt")
|
| 603 |
+
with open(summary_file_path, 'w') as file:
|
| 604 |
+
file.write(summary)
|
| 605 |
+
|
| 606 |
+
add_media_to_database(url, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model)
|
| 607 |
+
else:
|
| 608 |
+
logging.error(f"Failed to download video: {url}")
|
| 609 |
+
|
| 610 |
+
else:
|
| 611 |
+
# Video or audio or txt file
|
| 612 |
+
media_path = urls_or_media_file
|
| 613 |
+
|
| 614 |
+
if media_path.lower().endswith(('.txt', '.md')):
|
| 615 |
+
if media_path.lower().endswith('.txt'):
|
| 616 |
+
# Handle text file ingestion
|
| 617 |
+
result = ingest_text_file(media_path)
|
| 618 |
+
logging.info(result)
|
| 619 |
+
elif media_path.lower().endswith(('.mp4', '.avi', '.mov')):
|
| 620 |
+
if diarize:
|
| 621 |
+
audio_file, segments = perform_transcription(media_path, offset, whisper_model, vad_filter, diarize=True)
|
| 622 |
+
else:
|
| 623 |
+
audio_file, segments = perform_transcription(media_path, offset, whisper_model, vad_filter)
|
| 624 |
+
elif media_path.lower().endswith(('.wav', '.mp3', '.m4a')):
|
| 625 |
+
if diarize:
|
| 626 |
+
segments = speech_to_text(media_path, whisper_model=whisper_model, vad_filter=vad_filter, diarize=True)
|
| 627 |
+
else:
|
| 628 |
+
segments = speech_to_text(media_path, whisper_model=whisper_model, vad_filter=vad_filter)
|
| 629 |
+
else:
|
| 630 |
+
logging.error(f"Unsupported media file format: {media_path}")
|
| 631 |
+
continue
|
| 632 |
+
|
| 633 |
+
transcription_text = {'media_path': path, 'audio_file': media_path, 'transcription': segments}
|
| 634 |
+
|
| 635 |
+
# FIXME
|
| 636 |
+
if rolling_summarization:
|
| 637 |
+
# text = extract_text_from_segments(segments)
|
| 638 |
+
# summary = summarize_with_detail_openai(text, detail=detail)
|
| 639 |
+
pass
|
| 640 |
+
elif api_name:
|
| 641 |
+
summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key)
|
| 642 |
+
else:
|
| 643 |
+
summary = None
|
| 644 |
+
|
| 645 |
+
if summary:
|
| 646 |
+
# Save the summary file in the download_path directory
|
| 647 |
+
summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt")
|
| 648 |
+
with open(summary_file_path, 'w') as file:
|
| 649 |
+
file.write(summary)
|
| 650 |
+
|
| 651 |
+
add_media_to_database(path, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model)
|
| 652 |
+
|
| 653 |
+
except Exception as e:
|
| 654 |
+
logging.error(f"Error processing {path}: {str(e)}")
|
| 655 |
+
continue
|
| 656 |
+
|
| 657 |
+
return transcription_text
|
| 658 |
+
|
| 659 |
+
|
| 660 |
+
def signal_handler(sig, frame):
|
| 661 |
+
logging.info('Signal handler called with signal: %s', sig)
|
| 662 |
+
cleanup_process()
|
| 663 |
+
sys.exit(0)
|
| 664 |
+
|
| 665 |
+
|
| 666 |
+
############################## MAIN ##############################
|
| 667 |
+
#
|
| 668 |
+
#
|
| 669 |
+
|
| 670 |
+
if __name__ == "__main__":
|
| 671 |
+
# Register signal handlers
|
| 672 |
+
signal.signal(signal.SIGINT, signal_handler)
|
| 673 |
+
signal.signal(signal.SIGTERM, signal_handler)
|
| 674 |
+
|
| 675 |
+
# Logging setup
|
| 676 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 677 |
+
|
| 678 |
+
# Load Config
|
| 679 |
+
loaded_config_data = load_and_log_configs()
|
| 680 |
+
|
| 681 |
+
if loaded_config_data:
|
| 682 |
+
logging.info("Main: Configuration loaded successfully")
|
| 683 |
+
# You can access the configuration data like this:
|
| 684 |
+
# print(f"OpenAI API Key: {config_data['api_keys']['openai']}")
|
| 685 |
+
# print(f"Anthropic Model: {config_data['models']['anthropic']}")
|
| 686 |
+
# print(f"Kobold API IP: {config_data['local_apis']['kobold']['ip']}")
|
| 687 |
+
# print(f"Output Path: {config_data['output_path']}")
|
| 688 |
+
# print(f"Processing Choice: {config_data['processing_choice']}")
|
| 689 |
+
else:
|
| 690 |
+
print("Failed to load configuration")
|
| 691 |
+
|
| 692 |
+
# Print ascii_art
|
| 693 |
+
print_hello()
|
| 694 |
+
|
| 695 |
+
transcription_text = None
|
| 696 |
+
|
| 697 |
+
parser = argparse.ArgumentParser(
|
| 698 |
+
description='Transcribe and summarize videos.',
|
| 699 |
+
epilog='''
|
| 700 |
+
Sample commands:
|
| 701 |
+
1. Simple Sample command structure:
|
| 702 |
+
summarize.py <path_to_video> -api openai -k tag_one tag_two tag_three
|
| 703 |
+
|
| 704 |
+
2. Rolling Summary Sample command structure:
|
| 705 |
+
summarize.py <path_to_video> -api openai -prompt "custom_prompt_goes_here-is-appended-after-transcription" -roll -detail 0.01 -k tag_one tag_two tag_three
|
| 706 |
+
|
| 707 |
+
3. FULL Sample command structure:
|
| 708 |
+
summarize.py <path_to_video> -api openai -ns 2 -wm small.en -off 0 -vad -log INFO -prompt "custom_prompt" -overwrite -roll -detail 0.01 -k tag_one tag_two tag_three
|
| 709 |
+
|
| 710 |
+
4. Sample command structure for UI:
|
| 711 |
+
summarize.py -gui -log DEBUG
|
| 712 |
+
''',
|
| 713 |
+
formatter_class=argparse.RawTextHelpFormatter
|
| 714 |
+
)
|
| 715 |
+
parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?')
|
| 716 |
+
parser.add_argument('-v', '--video', action='store_true', help='Download the video instead of just the audio')
|
| 717 |
+
parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)')
|
| 718 |
+
parser.add_argument('-key', '--api_key', type=str, help='API key for summarization (optional)')
|
| 719 |
+
parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)')
|
| 720 |
+
parser.add_argument('-wm', '--whisper_model', type=str, default='small',
|
| 721 |
+
help='Whisper model (default: small)| Options: tiny.en, tiny, base.en, base, small.en, small, medium.en, '
|
| 722 |
+
'medium, large-v1, large-v2, large-v3, large, distil-large-v2, distil-medium.en, '
|
| 723 |
+
'distil-small.en')
|
| 724 |
+
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)')
|
| 725 |
+
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter')
|
| 726 |
+
parser.add_argument('-log', '--log_level', type=str, default='INFO',
|
| 727 |
+
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)')
|
| 728 |
+
parser.add_argument('-gui', '--user_interface', action='store_true', default=True, help="Launch the Gradio user interface")
|
| 729 |
+
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode')
|
| 730 |
+
parser.add_argument('-prompt', '--custom_prompt', type=str,
|
| 731 |
+
help='Pass in a custom prompt to be used in place of the existing one.\n (Probably should just '
|
| 732 |
+
'modify the script itself...)')
|
| 733 |
+
parser.add_argument('-overwrite', '--overwrite', action='store_true', help='Overwrite existing files')
|
| 734 |
+
parser.add_argument('-roll', '--rolling_summarization', action='store_true', help='Enable rolling summarization')
|
| 735 |
+
parser.add_argument('-detail', '--detail_level', type=float, help='Mandatory if rolling summarization is enabled, '
|
| 736 |
+
'defines the chunk size.\n Default is 0.01(lots '
|
| 737 |
+
'of chunks) -> 1.00 (few chunks)\n Currently '
|
| 738 |
+
'only OpenAI works. ',
|
| 739 |
+
default=0.01, )
|
| 740 |
+
parser.add_argument('-model', '--llm_model', type=str, default='',
|
| 741 |
+
help='Model to use for LLM summarization (only used for vLLM/TabbyAPI)')
|
| 742 |
+
parser.add_argument('-k', '--keywords', nargs='+', default=['cli_ingest_no_tag'],
|
| 743 |
+
help='Keywords for tagging the media, can use multiple separated by spaces (default: cli_ingest_no_tag)')
|
| 744 |
+
parser.add_argument('--log_file', type=str, help='Where to save logfile (non-default)')
|
| 745 |
+
parser.add_argument('--local_llm', action='store_true',
|
| 746 |
+
help="Use a local LLM from the script(Downloads llamafile from github and 'mistral-7b-instruct-v0.2.Q8' - 8GB model from Huggingface)")
|
| 747 |
+
parser.add_argument('--server_mode', action='store_true',
|
| 748 |
+
help='Run in server mode (This exposes the GUI/Server to the network)')
|
| 749 |
+
parser.add_argument('--share_public', type=int, default=7860,
|
| 750 |
+
help="This will use Gradio's built-in ngrok tunneling to share the server publicly on the internet. Specify the port to use (default: 7860)")
|
| 751 |
+
parser.add_argument('--port', type=int, default=7860, help='Port to run the server on')
|
| 752 |
+
parser.add_argument('--ingest_text_file', action='store_true',
|
| 753 |
+
help='Ingest .txt files as content instead of treating them as URL lists')
|
| 754 |
+
parser.add_argument('--text_title', type=str, help='Title for the text file being ingested')
|
| 755 |
+
parser.add_argument('--text_author', type=str, help='Author of the text file being ingested')
|
| 756 |
+
parser.add_argument('--diarize', action='store_true', help='Enable speaker diarization')
|
| 757 |
+
# parser.add_argument('--offload', type=int, default=20, help='Numbers of layers to offload to GPU for Llamafile usage')
|
| 758 |
+
# parser.add_argument('-o', '--output_path', type=str, help='Path to save the output file')
|
| 759 |
+
|
| 760 |
+
args = parser.parse_args()
|
| 761 |
+
|
| 762 |
+
# Set Chunking values/variables
|
| 763 |
+
set_chunk_txt_by_words = False
|
| 764 |
+
set_max_txt_chunk_words = 0
|
| 765 |
+
set_chunk_txt_by_sentences = False
|
| 766 |
+
set_max_txt_chunk_sentences = 0
|
| 767 |
+
set_chunk_txt_by_paragraphs = False
|
| 768 |
+
set_max_txt_chunk_paragraphs = 0
|
| 769 |
+
set_chunk_txt_by_tokens = False
|
| 770 |
+
set_max_txt_chunk_tokens = 0
|
| 771 |
+
|
| 772 |
+
if args.share_public:
|
| 773 |
+
share_public = args.share_public
|
| 774 |
+
else:
|
| 775 |
+
share_public = None
|
| 776 |
+
if args.server_mode:
|
| 777 |
+
|
| 778 |
+
server_mode = args.server_mode
|
| 779 |
+
else:
|
| 780 |
+
server_mode = None
|
| 781 |
+
if args.server_mode is True:
|
| 782 |
+
server_mode = True
|
| 783 |
+
if args.port:
|
| 784 |
+
server_port = args.port
|
| 785 |
+
else:
|
| 786 |
+
server_port = None
|
| 787 |
+
|
| 788 |
+
########## Logging setup
|
| 789 |
+
logger = logging.getLogger()
|
| 790 |
+
logger.setLevel(getattr(logging, args.log_level))
|
| 791 |
+
|
| 792 |
+
# Create console handler
|
| 793 |
+
console_handler = logging.StreamHandler()
|
| 794 |
+
console_handler.setLevel(getattr(logging, args.log_level))
|
| 795 |
+
console_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
| 796 |
+
console_handler.setFormatter(console_formatter)
|
| 797 |
+
|
| 798 |
+
if args.log_file:
|
| 799 |
+
# Create file handler
|
| 800 |
+
file_handler = logging.FileHandler(args.log_file)
|
| 801 |
+
file_handler.setLevel(getattr(logging, args.log_level))
|
| 802 |
+
file_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
| 803 |
+
file_handler.setFormatter(file_formatter)
|
| 804 |
+
logger.addHandler(file_handler)
|
| 805 |
+
logger.info(f"Log file created at: {args.log_file}")
|
| 806 |
+
|
| 807 |
+
# Check if the user wants to use the local LLM from the script
|
| 808 |
+
local_llm = args.local_llm
|
| 809 |
+
logging.info(f'Local LLM flag: {local_llm}')
|
| 810 |
+
|
| 811 |
+
# Check if the user wants to ingest a text file (singular or multiple from a folder)
|
| 812 |
+
if args.input_path is not None:
|
| 813 |
+
if os.path.isdir(args.input_path) and args.ingest_text_file:
|
| 814 |
+
results = ingest_folder(args.input_path, keywords=args.keywords)
|
| 815 |
+
for result in results:
|
| 816 |
+
print(result)
|
| 817 |
+
elif args.input_path.lower().endswith('.txt') and args.ingest_text_file:
|
| 818 |
+
result = ingest_text_file(args.input_path, title=args.text_title, author=args.text_author,
|
| 819 |
+
keywords=args.keywords)
|
| 820 |
+
print(result)
|
| 821 |
+
sys.exit(0)
|
| 822 |
+
|
| 823 |
+
# Launch the GUI
|
| 824 |
+
# This is huggingface so:
|
| 825 |
+
if args.user_interface:
|
| 826 |
+
if local_llm:
|
| 827 |
+
local_llm_function()
|
| 828 |
+
time.sleep(2)
|
| 829 |
+
webbrowser.open_new_tab('http://127.0.0.1:7860')
|
| 830 |
+
launch_ui()
|
| 831 |
+
elif not args.input_path:
|
| 832 |
+
parser.print_help()
|
| 833 |
+
sys.exit(1)
|
| 834 |
+
|
| 835 |
+
else:
|
| 836 |
+
logging.info('Starting the transcription and summarization process.')
|
| 837 |
+
logging.info(f'Input path: {args.input_path}')
|
| 838 |
+
logging.info(f'API Name: {args.api_name}')
|
| 839 |
+
logging.info(f'Number of speakers: {args.num_speakers}')
|
| 840 |
+
logging.info(f'Whisper model: {args.whisper_model}')
|
| 841 |
+
logging.info(f'Offset: {args.offset}')
|
| 842 |
+
logging.info(f'VAD filter: {args.vad_filter}')
|
| 843 |
+
logging.info(f'Log Level: {args.log_level}')
|
| 844 |
+
logging.info(f'Demo Mode: {args.demo_mode}')
|
| 845 |
+
logging.info(f'Custom Prompt: {args.custom_prompt}')
|
| 846 |
+
logging.info(f'Overwrite: {args.overwrite}')
|
| 847 |
+
logging.info(f'Rolling Summarization: {args.rolling_summarization}')
|
| 848 |
+
logging.info(f'User Interface: {args.user_interface}')
|
| 849 |
+
logging.info(f'Video Download: {args.video}')
|
| 850 |
+
# logging.info(f'Save File location: {args.output_path}')
|
| 851 |
+
# logging.info(f'Log File location: {args.log_file}')
|
| 852 |
+
|
| 853 |
+
global api_name
|
| 854 |
+
api_name = args.api_name
|
| 855 |
+
|
| 856 |
+
########## Custom Prompt setup
|
| 857 |
+
custom_prompt_input = args.custom_prompt
|
| 858 |
+
|
| 859 |
+
if not args.custom_prompt:
|
| 860 |
+
logging.debug("No custom prompt defined, will use default")
|
| 861 |
+
args.custom_prompt_input = (
|
| 862 |
+
"\n\nabove is the transcript of a video. "
|
| 863 |
+
"Please read through the transcript carefully. Identify the main topics that are "
|
| 864 |
+
"discussed over the course of the transcript. Then, summarize the key points about each "
|
| 865 |
+
"main topic in a concise bullet point. The bullet points should cover the key "
|
| 866 |
+
"information conveyed about each topic in the video, but should be much shorter than "
|
| 867 |
+
"the full transcript. Please output your bullet point summary inside <bulletpoints> "
|
| 868 |
+
"tags."
|
| 869 |
+
)
|
| 870 |
+
print("No custom prompt defined, will use default")
|
| 871 |
+
|
| 872 |
+
custom_prompt_input = args.custom_prompt
|
| 873 |
+
else:
|
| 874 |
+
logging.debug(f"Custom prompt defined, will use \n\nf{custom_prompt_input} \n\nas the prompt")
|
| 875 |
+
print(f"Custom Prompt has been defined. Custom prompt: \n\n {args.custom_prompt}")
|
| 876 |
+
|
| 877 |
+
|
| 878 |
+
summary = None # Initialize to ensure it's always defined
|
| 879 |
+
if args.detail_level == None:
|
| 880 |
+
args.detail_level = 0.01
|
| 881 |
+
|
| 882 |
+
# FIXME
|
| 883 |
+
# if args.api_name and args.rolling_summarization and any(
|
| 884 |
+
# key.startswith(args.api_name) and value is not None for key, value in api_keys.items()):
|
| 885 |
+
# logging.info(f'MAIN: API used: {args.api_name}')
|
| 886 |
+
# logging.info('MAIN: Rolling Summarization will be performed.')
|
| 887 |
+
|
| 888 |
+
elif args.api_name:
|
| 889 |
+
logging.info(f'MAIN: API used: {args.api_name}')
|
| 890 |
+
logging.info('MAIN: Summarization (not rolling) will be performed.')
|
| 891 |
+
|
| 892 |
+
else:
|
| 893 |
+
logging.info('No API specified. Summarization will not be performed.')
|
| 894 |
+
|
| 895 |
+
logging.debug("Platform check being performed...")
|
| 896 |
+
platform_check()
|
| 897 |
+
logging.debug("CUDA check being performed...")
|
| 898 |
+
cuda_check()
|
| 899 |
+
processing_choice = "cpu"
|
| 900 |
+
logging.debug("ffmpeg check being performed...")
|
| 901 |
+
check_ffmpeg()
|
| 902 |
+
# download_ffmpeg()
|
| 903 |
+
|
| 904 |
+
llm_model = args.llm_model or None
|
| 905 |
+
# FIXME - dirty hack
|
| 906 |
+
args.time_based = False
|
| 907 |
+
|
| 908 |
+
try:
|
| 909 |
+
results = main(args.input_path, api_name=args.api_name, api_key=args.api_key,
|
| 910 |
+
num_speakers=args.num_speakers, whisper_model=args.whisper_model, offset=args.offset,
|
| 911 |
+
vad_filter=args.vad_filter, download_video_flag=args.video, custom_prompt=args.custom_prompt_input,
|
| 912 |
+
overwrite=args.overwrite, rolling_summarization=args.rolling_summarization,
|
| 913 |
+
detail=args.detail_level, keywords=args.keywords, llm_model=args.llm_model,
|
| 914 |
+
time_based=args.time_based, set_chunk_txt_by_words=set_chunk_txt_by_words,
|
| 915 |
+
set_max_txt_chunk_words=set_max_txt_chunk_words,
|
| 916 |
+
set_chunk_txt_by_sentences=set_chunk_txt_by_sentences,
|
| 917 |
+
set_max_txt_chunk_sentences=set_max_txt_chunk_sentences,
|
| 918 |
+
set_chunk_txt_by_paragraphs=set_chunk_txt_by_paragraphs,
|
| 919 |
+
set_max_txt_chunk_paragraphs=set_max_txt_chunk_paragraphs,
|
| 920 |
+
set_chunk_txt_by_tokens=set_chunk_txt_by_tokens,
|
| 921 |
+
set_max_txt_chunk_tokens=set_max_txt_chunk_tokens)
|
| 922 |
+
|
| 923 |
+
logging.info('Transcription process completed.')
|
| 924 |
+
atexit.register(cleanup_process)
|
| 925 |
+
except Exception as e:
|
| 926 |
+
logging.error('An error occurred during the transcription process.')
|
| 927 |
+
logging.error(str(e))
|
| 928 |
+
sys.exit(1)
|
| 929 |
+
|
| 930 |
+
finally:
|
| 931 |
+
cleanup_process()
|