Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| # Std Lib Imports | |
| import argparse | |
| import atexit | |
| import json | |
| import logging | |
| import os | |
| import signal | |
| import sys | |
| import time | |
| import webbrowser | |
| # | |
| # Local Library Imports | |
| sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'App_Function_Libraries'))) | |
| from App_Function_Libraries.Book_Ingestion_Lib import ingest_folder, ingest_text_file | |
| from App_Function_Libraries.Chunk_Lib import semantic_chunk_long_file#, rolling_summarize_function, | |
| from App_Function_Libraries.Gradio_Related import launch_ui | |
| from App_Function_Libraries.Local_LLM_Inference_Engine_Lib import cleanup_process, local_llm_function | |
| from App_Function_Libraries.Local_Summarization_Lib import summarize_with_local_llm | |
| from App_Function_Libraries.Summarization_General_Lib import summarize_with_openai, summarize_with_anthropic, \ | |
| summarize_with_cohere, summarize_with_groq, perform_transcription, perform_summarization | |
| from App_Function_Libraries.Audio_Transcription_Lib import speech_to_text | |
| from App_Function_Libraries.Local_File_Processing_Lib import read_paths_from_file, process_local_file | |
| from App_Function_Libraries.DB.DB_Manager import add_media_to_database | |
| from App_Function_Libraries.Utils.System_Checks_Lib import cuda_check, platform_check, check_ffmpeg | |
| from App_Function_Libraries.Utils.Utils import load_and_log_configs, create_download_directory, extract_text_from_segments, \ | |
| cleanup_downloads | |
| from App_Function_Libraries.Video_DL_Ingestion_Lib import download_video, extract_video_info | |
| # | |
| # 3rd-Party Module Imports | |
| import requests | |
| # OpenAI Tokenizer support | |
| # | |
| # Other Tokenizers | |
| # | |
| ####################### | |
| # Logging Setup | |
| # | |
| log_level = "DEBUG" | |
| logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s') | |
| os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
| # | |
| ############# | |
| # Global variables setup | |
| #custom_prompt_input = ("Above is the transcript of a video. Please read through the transcript carefully. Identify the " | |
| #"main topics that are discussed over the course of the transcript. Then, summarize the key points about each main " | |
| #"topic in bullet points. The bullet points should cover the key information conveyed about each topic in the video, " | |
| #"but should be much shorter than the full transcript. Please output your bullet point summary inside <bulletpoints> " | |
| #"tags.") | |
| # | |
| # Global variables | |
| whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3", | |
| "distil-large-v2", "distil-medium.en", "distil-small.en"] | |
| server_mode = False | |
| share_public = False | |
| # | |
| # | |
| ####################### | |
| ####################### | |
| # Function Sections | |
| # | |
| abc_xyz = """ | |
| Database Setup | |
| Config Loading | |
| System Checks | |
| DataBase Functions | |
| Processing Paths and local file handling | |
| Video Download/Handling | |
| Audio Transcription | |
| Diarization | |
| Chunking-related Techniques & Functions | |
| Tokenization-related Techniques & Functions | |
| Summarizers | |
| Gradio UI | |
| Main | |
| """ | |
| # | |
| # | |
| ####################### | |
| ####################### | |
| # | |
| # TL/DW: Too Long Didn't Watch | |
| # | |
| # Project originally created by https://github.com/the-crypt-keeper | |
| # Modifications made by https://github.com/rmusser01 | |
| # All credit to the original authors, I've just glued shit together. | |
| # | |
| # | |
| # Usage: | |
| # | |
| # Download Audio only from URL -> Transcribe audio: | |
| # python summarize.py https://www.youtube.com/watch?v=4nd1CDZP21s` | |
| # | |
| # Download Audio+Video from URL -> Transcribe audio from Video:** | |
| # python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s` | |
| # | |
| # Download Audio only from URL -> Transcribe audio -> Summarize using (`anthropic`/`cohere`/`openai`/`llama` (llama.cpp)/`ooba` (oobabooga/text-gen-webui)/`kobold` (kobold.cpp)/`tabby` (Tabbyapi)) API:** | |
| # python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s -api <your choice of API>` - Make sure to put your API key into `config.txt` under the appropriate API variable | |
| # | |
| # Download Audio+Video from a list of videos in a text file (can be file paths or URLs) and have them all summarized:** | |
| # python summarize.py ./local/file_on_your/system --api_name <API_name>` | |
| # | |
| # Run it as a WebApp** | |
| # python summarize.py -gui` - This requires you to either stuff your API keys into the `config.txt` file, or pass them into the app every time you want to use it. | |
| # Can be helpful for setting up a shared instance, but not wanting people to perform inference on your server. | |
| # | |
| ####################### | |
| ####################### | |
| # Random issues I've encountered and how I solved them: | |
| # 1. Something about cuda nn library missing, even though cuda is installed... | |
| # https://github.com/tensorflow/tensorflow/issues/54784 - Basically, installing zlib made it go away. idk. | |
| # Or https://github.com/SYSTRAN/faster-whisper/issues/85 | |
| # | |
| # 2. ERROR: Could not install packages due to an OSError: [WinError 2] The system cannot find the file specified: 'C:\\Python312\\Scripts\\dateparser-download.exe' -> 'C:\\Python312\\Scripts\\dateparser-download.exe.deleteme' | |
| # Resolved through adding --user to the pip install command | |
| # | |
| # 3. Windows: Could not locate cudnn_ops_infer64_8.dll. Please make sure it is in your library path! | |
| # | |
| # 4. | |
| # | |
| # 5. | |
| # | |
| # | |
| # | |
| ####################### | |
| ####################### | |
| # DB Setup | |
| # Handled by SQLite_DB.py | |
| ####################### | |
| ####################### | |
| # Config loading | |
| # | |
| # 1. | |
| # 2. | |
| # | |
| # | |
| ####################### | |
| ####################### | |
| # System Startup Notice | |
| # | |
| # Dirty hack - sue me. - FIXME - fix this... | |
| os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' | |
| whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3", | |
| "distil-large-v2", "distil-medium.en", "distil-small.en"] | |
| source_languages = { | |
| "en": "English", | |
| "zh": "Chinese", | |
| "de": "German", | |
| "es": "Spanish", | |
| "ru": "Russian", | |
| "ko": "Korean", | |
| "fr": "French" | |
| } | |
| source_language_list = [key[0] for key in source_languages.items()] | |
| def print_hello(): | |
| print(r"""_____ _ ________ _ _ | |
| |_ _|| | / /| _ \| | | | _ | |
| | | | | / / | | | || | | |(_) | |
| | | | | / / | | | || |/\| | | |
| | | | |____ / / | |/ / \ /\ / _ | |
| \_/ \_____//_/ |___/ \/ \/ (_) | |
| _ _ | |
| | | | | | |
| | |_ ___ ___ | | ___ _ __ __ _ | |
| | __| / _ \ / _ \ | | / _ \ | '_ \ / _` | | |
| | |_ | (_) || (_) | | || (_) || | | || (_| | _ | |
| \__| \___/ \___/ |_| \___/ |_| |_| \__, |( ) | |
| __/ ||/ | |
| |___/ | |
| _ _ _ _ _ _ _ | |
| | |(_) | | ( )| | | | | | | |
| __| | _ __| | _ __ |/ | |_ __ __ __ _ | |_ ___ | |__ | |
| / _` || | / _` || '_ \ | __| \ \ /\ / / / _` || __| / __|| '_ \ | |
| | (_| || || (_| || | | | | |_ \ V V / | (_| || |_ | (__ | | | | | |
| \__,_||_| \__,_||_| |_| \__| \_/\_/ \__,_| \__| \___||_| |_| | |
| """) | |
| time.sleep(1) | |
| return | |
| # | |
| # | |
| ####################### | |
| ####################### | |
| # System Check Functions | |
| # | |
| # 1. platform_check() | |
| # 2. cuda_check() | |
| # 3. decide_cpugpu() | |
| # 4. check_ffmpeg() | |
| # 5. download_ffmpeg() | |
| # | |
| ####################### | |
| ####################### | |
| # DB Functions | |
| # | |
| # create_tables() | |
| # add_keyword() | |
| # delete_keyword() | |
| # add_keyword() | |
| # add_media_with_keywords() | |
| # search_db() | |
| # format_results() | |
| # search_and_display() | |
| # export_to_csv() | |
| # is_valid_url() | |
| # is_valid_date() | |
| # | |
| ######################################################################################################################## | |
| ######################################################################################################################## | |
| # Processing Paths and local file handling | |
| # | |
| # Function List | |
| # 1. read_paths_from_file(file_path) | |
| # 2. process_path(path) | |
| # 3. process_local_file(file_path) | |
| # 4. read_paths_from_file(file_path: str) -> List[str] | |
| # | |
| # | |
| ######################################################################################################################## | |
| ####################################################################################################################### | |
| # Online Article Extraction / Handling | |
| # | |
| # Function List | |
| # 1. get_page_title(url) | |
| # 2. get_article_text(url) | |
| # 3. get_article_title(article_url_arg) | |
| # | |
| # | |
| ####################################################################################################################### | |
| ####################################################################################################################### | |
| # Video Download/Handling | |
| # Video-DL-Ingestion-Lib | |
| # | |
| # Function List | |
| # 1. get_video_info(url) | |
| # 2. create_download_directory(title) | |
| # 3. sanitize_filename(title) | |
| # 4. normalize_title(title) | |
| # 5. get_youtube(video_url) | |
| # 6. get_playlist_videos(playlist_url) | |
| # 7. download_video(video_url, download_path, info_dict, download_video_flag) | |
| # 8. save_to_file(video_urls, filename) | |
| # 9. save_summary_to_file(summary, file_path) | |
| # 10. process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter, download_video, download_audio, rolling_summarization, detail_level, question_box, keywords, ) # FIXME - UPDATE | |
| # | |
| # | |
| ####################################################################################################################### | |
| ####################################################################################################################### | |
| # Audio Transcription | |
| # | |
| # Function List | |
| # 1. convert_to_wav(video_file_path, offset=0, overwrite=False) | |
| # 2. speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False) | |
| # | |
| # | |
| ####################################################################################################################### | |
| ####################################################################################################################### | |
| # Diarization | |
| # | |
| # Function List 1. speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", | |
| # embedding_size=512, num_speakers=0) | |
| # | |
| # | |
| ####################################################################################################################### | |
| ####################################################################################################################### | |
| # Chunking-related Techniques & Functions | |
| # | |
| # | |
| # FIXME | |
| # | |
| # | |
| ####################################################################################################################### | |
| ####################################################################################################################### | |
| # Tokenization-related Functions | |
| # | |
| # | |
| # FIXME | |
| # | |
| # | |
| ####################################################################################################################### | |
| ####################################################################################################################### | |
| # Website-related Techniques & Functions | |
| # | |
| # | |
| # | |
| # | |
| ####################################################################################################################### | |
| ####################################################################################################################### | |
| # Summarizers | |
| # | |
| # Function List | |
| # 1. extract_text_from_segments(segments: List[Dict]) -> str | |
| # 2. summarize_with_openai(api_key, file_path, custom_prompt_arg) | |
| # 3. summarize_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5) | |
| # 4. summarize_with_cohere(api_key, file_path, model, custom_prompt_arg) | |
| # 5. summarize_with_groq(api_key, file_path, model, custom_prompt_arg) | |
| # | |
| ################################# | |
| # Local Summarization | |
| # | |
| # Function List | |
| # | |
| # 1. summarize_with_local_llm(file_path, custom_prompt_arg) | |
| # 2. summarize_with_llama(api_url, file_path, token, custom_prompt) | |
| # 3. summarize_with_kobold(api_url, file_path, kobold_api_token, custom_prompt) | |
| # 4. summarize_with_oobabooga(api_url, file_path, ooba_api_token, custom_prompt) | |
| # 5. summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg) | |
| # 6. summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt) | |
| # 7. save_summary_to_file(summary, file_path) | |
| # | |
| ####################################################################################################################### | |
| ####################################################################################################################### | |
| # Summarization with Detail | |
| # | |
| # FIXME - see 'Old_Chunking_Lib.py' | |
| # | |
| # | |
| ####################################################################################################################### | |
| ####################################################################################################################### | |
| # Gradio UI | |
| # | |
| # | |
| # | |
| # | |
| # | |
| ################################################################################################################# | |
| # | |
| ####################################################################################################################### | |
| # Local LLM Setup / Running | |
| # | |
| # Function List | |
| # 1. download_latest_llamafile(repo, asset_name_prefix, output_filename) | |
| # 2. download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5) | |
| # 3. verify_checksum(file_path, expected_checksum) | |
| # 4. cleanup_process() | |
| # 5. signal_handler(sig, frame) | |
| # 6. local_llm_function() | |
| # 7. launch_in_new_terminal_windows(executable, args) | |
| # 8. launch_in_new_terminal_linux(executable, args) | |
| # 9. launch_in_new_terminal_mac(executable, args) | |
| # | |
| # | |
| ####################################################################################################################### | |
| ####################################################################################################################### | |
| # Helper Functions for Main() & process_url() | |
| # | |
| # | |
| # | |
| ####################################################################################################################### | |
| ###################################################################################################################### | |
| # Main() | |
| # | |
| def main(input_path, api_name=None, api_key=None, | |
| num_speakers=2, | |
| whisper_model="small.en", | |
| offset=0, | |
| vad_filter=False, | |
| download_video_flag=False, | |
| custom_prompt=None, | |
| overwrite=False, | |
| rolling_summarization=False, | |
| detail=0.01, | |
| keywords=None, | |
| llm_model=None, | |
| time_based=False, | |
| set_chunk_txt_by_words=False, | |
| set_max_txt_chunk_words=0, | |
| set_chunk_txt_by_sentences=False, | |
| set_max_txt_chunk_sentences=0, | |
| set_chunk_txt_by_paragraphs=False, | |
| set_max_txt_chunk_paragraphs=0, | |
| set_chunk_txt_by_tokens=False, | |
| set_max_txt_chunk_tokens=0, | |
| ingest_text_file=False, | |
| chunk=False, | |
| max_chunk_size=2000, | |
| chunk_overlap=100, | |
| chunk_unit='tokens', | |
| summarize_chunks=None, | |
| diarize=False | |
| ): | |
| global detail_level_number, summary, audio_file, transcription_text, info_dict | |
| detail_level = detail | |
| print(f"Keywords: {keywords}") | |
| if not input_path: | |
| return [] | |
| start_time = time.monotonic() | |
| paths = [input_path] if not os.path.isfile(input_path) else read_paths_from_file(input_path) | |
| results = [] | |
| for path in paths: | |
| try: | |
| if path.startswith('http'): | |
| info_dict, title = extract_video_info(path) | |
| download_path = create_download_directory(title) | |
| video_path = download_video(path, download_path, info_dict, download_video_flag) | |
| if video_path: | |
| if diarize: | |
| audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter, diarize=True) | |
| transcription_text = {'audio_file': audio_file, 'transcription': segments} | |
| else: | |
| audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter) | |
| transcription_text = {'audio_file': audio_file, 'transcription': segments} | |
| # FIXME rolling summarization | |
| if rolling_summarization == True: | |
| pass | |
| # text = extract_text_from_segments(segments) | |
| # detail = detail_level | |
| # additional_instructions = custom_prompt_input | |
| # chunk_text_by_words = set_chunk_txt_by_words | |
| # max_words = set_max_txt_chunk_words | |
| # chunk_text_by_sentences = set_chunk_txt_by_sentences | |
| # max_sentences = set_max_txt_chunk_sentences | |
| # chunk_text_by_paragraphs = set_chunk_txt_by_paragraphs | |
| # max_paragraphs = set_max_txt_chunk_paragraphs | |
| # chunk_text_by_tokens = set_chunk_txt_by_tokens | |
| # max_tokens = set_max_txt_chunk_tokens | |
| # # FIXME | |
| # summarize_recursively = rolling_summarization | |
| # verbose = False | |
| # model = None | |
| # summary = rolling_summarize_function(text, detail, api_name, api_key, model, custom_prompt_input, | |
| # chunk_text_by_words, | |
| # max_words, chunk_text_by_sentences, | |
| # max_sentences, chunk_text_by_paragraphs, | |
| # max_paragraphs, chunk_text_by_tokens, | |
| # max_tokens, summarize_recursively, verbose | |
| # ) | |
| elif api_name: | |
| summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key) | |
| else: | |
| summary = None | |
| if summary: | |
| # Save the summary file in the download_path directory | |
| summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt") | |
| with open(summary_file_path, 'w') as file: | |
| file.write(summary) | |
| add_media_to_database(path, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model) | |
| else: | |
| logging.error(f"Failed to download video: {path}") | |
| # FIXME - make sure this doesn't break ingesting multiple videos vs multiple text files | |
| # FIXME - Need to update so that chunking is fully handled. | |
| elif chunk and path.lower().endswith('.txt'): | |
| chunks = semantic_chunk_long_file(path, max_chunk_size, chunk_overlap) | |
| if chunks: | |
| chunks_data = { | |
| "file_path": path, | |
| "chunk_unit": chunk_unit, | |
| "max_chunk_size": max_chunk_size, | |
| "chunk_overlap": chunk_overlap, | |
| "chunks": [] | |
| } | |
| summaries_data = { | |
| "file_path": path, | |
| "summarization_method": summarize_chunks, | |
| "summaries": [] | |
| } | |
| for i, chunk_text in enumerate(chunks): | |
| chunk_info = { | |
| "chunk_id": i + 1, | |
| "text": chunk_text | |
| } | |
| chunks_data["chunks"].append(chunk_info) | |
| if summarize_chunks: | |
| summary = None | |
| if summarize_chunks == 'openai': | |
| summary = summarize_with_openai(api_key, chunk_text, custom_prompt) | |
| elif summarize_chunks == 'anthropic': | |
| summary = summarize_with_anthropic(api_key, chunk_text, custom_prompt) | |
| elif summarize_chunks == 'cohere': | |
| summary = summarize_with_cohere(api_key, chunk_text, custom_prompt) | |
| elif summarize_chunks == 'groq': | |
| summary = summarize_with_groq(api_key, chunk_text, custom_prompt) | |
| elif summarize_chunks == 'local-llm': | |
| summary = summarize_with_local_llm(chunk_text, custom_prompt) | |
| # FIXME - Add more summarization methods as needed | |
| if summary: | |
| summary_info = { | |
| "chunk_id": i + 1, | |
| "summary": summary | |
| } | |
| summaries_data["summaries"].append(summary_info) | |
| else: | |
| logging.warning(f"Failed to generate summary for chunk {i + 1}") | |
| # Save chunks to a single JSON file | |
| chunks_file_path = f"{path}_chunks.json" | |
| with open(chunks_file_path, 'w', encoding='utf-8') as f: | |
| json.dump(chunks_data, f, ensure_ascii=False, indent=2) | |
| logging.info(f"All chunks saved to {chunks_file_path}") | |
| # Save summaries to a single JSON file (if summarization was performed) | |
| if summarize_chunks: | |
| summaries_file_path = f"{path}_summaries.json" | |
| with open(summaries_file_path, 'w', encoding='utf-8') as f: | |
| json.dump(summaries_data, f, ensure_ascii=False, indent=2) | |
| logging.info(f"All summaries saved to {summaries_file_path}") | |
| logging.info(f"File {path} chunked into {len(chunks)} parts using {chunk_unit} as the unit.") | |
| else: | |
| logging.error(f"Failed to chunk file {path}") | |
| # Handle downloading of URLs from a text file or processing local video/audio files | |
| else: | |
| download_path, info_dict, urls_or_media_file = process_local_file(path) | |
| if isinstance(urls_or_media_file, list): | |
| # Text file containing URLs | |
| for url in urls_or_media_file: | |
| for item in urls_or_media_file: | |
| if item.startswith(('http://', 'https://')): | |
| info_dict, title = extract_video_info(url) | |
| download_path = create_download_directory(title) | |
| video_path = download_video(url, download_path, info_dict, download_video_flag) | |
| if video_path: | |
| if diarize: | |
| audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter, diarize=True) | |
| else: | |
| audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter) | |
| transcription_text = {'audio_file': audio_file, 'transcription': segments} | |
| if rolling_summarization: | |
| text = extract_text_from_segments(segments) | |
| # FIXME | |
| #summary = summarize_with_detail_openai(text, detail=detail) | |
| elif api_name: | |
| summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key) | |
| else: | |
| summary = None | |
| if summary: | |
| # Save the summary file in the download_path directory | |
| summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt") | |
| with open(summary_file_path, 'w') as file: | |
| file.write(summary) | |
| add_media_to_database(url, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model) | |
| else: | |
| logging.error(f"Failed to download video: {url}") | |
| else: | |
| # Video or audio or txt file | |
| media_path = urls_or_media_file | |
| if media_path.lower().endswith(('.txt', '.md')): | |
| if media_path.lower().endswith('.txt'): | |
| # Handle text file ingestion | |
| result = ingest_text_file(media_path) | |
| logging.info(result) | |
| elif media_path.lower().endswith(('.mp4', '.avi', '.mov')): | |
| if diarize: | |
| audio_file, segments = perform_transcription(media_path, offset, whisper_model, vad_filter, diarize=True) | |
| else: | |
| audio_file, segments = perform_transcription(media_path, offset, whisper_model, vad_filter) | |
| elif media_path.lower().endswith(('.wav', '.mp3', '.m4a')): | |
| if diarize: | |
| segments = speech_to_text(media_path, whisper_model=whisper_model, vad_filter=vad_filter, diarize=True) | |
| else: | |
| segments = speech_to_text(media_path, whisper_model=whisper_model, vad_filter=vad_filter) | |
| else: | |
| logging.error(f"Unsupported media file format: {media_path}") | |
| continue | |
| transcription_text = {'media_path': path, 'audio_file': media_path, 'transcription': segments} | |
| # FIXME | |
| if rolling_summarization: | |
| # text = extract_text_from_segments(segments) | |
| # summary = summarize_with_detail_openai(text, detail=detail) | |
| pass | |
| elif api_name: | |
| summary = perform_summarization(api_name, transcription_text, custom_prompt_input, api_key) | |
| else: | |
| summary = None | |
| if summary: | |
| # Save the summary file in the download_path directory | |
| summary_file_path = os.path.join(download_path, f"{transcription_text}_summary.txt") | |
| with open(summary_file_path, 'w') as file: | |
| file.write(summary) | |
| add_media_to_database(path, info_dict, segments, summary, keywords, custom_prompt_input, whisper_model) | |
| except Exception as e: | |
| logging.error(f"Error processing {path}: {str(e)}") | |
| continue | |
| return transcription_text | |
| def signal_handler(sig, frame): | |
| logging.info('Signal handler called with signal: %s', sig) | |
| cleanup_process() | |
| sys.exit(0) | |
| ############################## MAIN ############################## | |
| # | |
| # | |
| if __name__ == "__main__": | |
| # Register signal handlers | |
| signal.signal(signal.SIGINT, signal_handler) | |
| signal.signal(signal.SIGTERM, signal_handler) | |
| # Logging setup | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
| # Load Config | |
| loaded_config_data = load_and_log_configs() | |
| if loaded_config_data: | |
| logging.info("Main: Configuration loaded successfully") | |
| # You can access the configuration data like this: | |
| # print(f"OpenAI API Key: {config_data['api_keys']['openai']}") | |
| # print(f"Anthropic Model: {config_data['models']['anthropic']}") | |
| # print(f"Kobold API IP: {config_data['local_apis']['kobold']['ip']}") | |
| # print(f"Output Path: {config_data['output_path']}") | |
| # print(f"Processing Choice: {config_data['processing_choice']}") | |
| else: | |
| print("Failed to load configuration") | |
| # Print ascii_art | |
| print_hello() | |
| transcription_text = None | |
| parser = argparse.ArgumentParser( | |
| description='Transcribe and summarize videos.', | |
| epilog=''' | |
| Sample commands: | |
| 1. Simple Sample command structure: | |
| summarize.py <path_to_video> -api openai -k tag_one tag_two tag_three | |
| 2. Rolling Summary Sample command structure: | |
| summarize.py <path_to_video> -api openai -prompt "custom_prompt_goes_here-is-appended-after-transcription" -roll -detail 0.01 -k tag_one tag_two tag_three | |
| 3. FULL Sample command structure: | |
| summarize.py <path_to_video> -api openai -ns 2 -wm small.en -off 0 -vad -log INFO -prompt "custom_prompt" -overwrite -roll -detail 0.01 -k tag_one tag_two tag_three | |
| 4. Sample command structure for UI: | |
| summarize.py -gui -log DEBUG | |
| ''', | |
| formatter_class=argparse.RawTextHelpFormatter | |
| ) | |
| parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?') | |
| parser.add_argument('-v', '--video', action='store_true', help='Download the video instead of just the audio') | |
| parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)') | |
| parser.add_argument('-key', '--api_key', type=str, help='API key for summarization (optional)') | |
| parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)') | |
| parser.add_argument('-wm', '--whisper_model', type=str, default='small', | |
| help='Whisper model (default: small)| Options: tiny.en, tiny, base.en, base, small.en, small, medium.en, ' | |
| 'medium, large-v1, large-v2, large-v3, large, distil-large-v2, distil-medium.en, ' | |
| 'distil-small.en') | |
| parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)') | |
| parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter') | |
| parser.add_argument('-log', '--log_level', type=str, default='INFO', | |
| choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)') | |
| parser.add_argument('-gui', '--user_interface', action='store_true', default=True, help="Launch the Gradio user interface") | |
| parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode') | |
| parser.add_argument('-prompt', '--custom_prompt', type=str, | |
| help='Pass in a custom prompt to be used in place of the existing one.\n (Probably should just ' | |
| 'modify the script itself...)') | |
| parser.add_argument('-overwrite', '--overwrite', action='store_true', help='Overwrite existing files') | |
| parser.add_argument('-roll', '--rolling_summarization', action='store_true', help='Enable rolling summarization') | |
| parser.add_argument('-detail', '--detail_level', type=float, help='Mandatory if rolling summarization is enabled, ' | |
| 'defines the chunk size.\n Default is 0.01(lots ' | |
| 'of chunks) -> 1.00 (few chunks)\n Currently ' | |
| 'only OpenAI works. ', | |
| default=0.01, ) | |
| parser.add_argument('-model', '--llm_model', type=str, default='', | |
| help='Model to use for LLM summarization (only used for vLLM/TabbyAPI)') | |
| parser.add_argument('-k', '--keywords', nargs='+', default=['cli_ingest_no_tag'], | |
| help='Keywords for tagging the media, can use multiple separated by spaces (default: cli_ingest_no_tag)') | |
| parser.add_argument('--log_file', type=str, help='Where to save logfile (non-default)') | |
| parser.add_argument('--local_llm', action='store_true', | |
| help="Use a local LLM from the script(Downloads llamafile from github and 'mistral-7b-instruct-v0.2.Q8' - 8GB model from Huggingface)") | |
| parser.add_argument('--server_mode', action='store_true', | |
| help='Run in server mode (This exposes the GUI/Server to the network)') | |
| parser.add_argument('--share_public', type=int, default=7860, | |
| help="This will use Gradio's built-in ngrok tunneling to share the server publicly on the internet. Specify the port to use (default: 7860)") | |
| parser.add_argument('--port', type=int, default=7860, help='Port to run the server on') | |
| parser.add_argument('--ingest_text_file', action='store_true', | |
| help='Ingest .txt files as content instead of treating them as URL lists') | |
| parser.add_argument('--text_title', type=str, help='Title for the text file being ingested') | |
| parser.add_argument('--text_author', type=str, help='Author of the text file being ingested') | |
| parser.add_argument('--diarize', action='store_true', help='Enable speaker diarization') | |
| # parser.add_argument('--offload', type=int, default=20, help='Numbers of layers to offload to GPU for Llamafile usage') | |
| # parser.add_argument('-o', '--output_path', type=str, help='Path to save the output file') | |
| args = parser.parse_args() | |
| # Set Chunking values/variables | |
| set_chunk_txt_by_words = False | |
| set_max_txt_chunk_words = 0 | |
| set_chunk_txt_by_sentences = False | |
| set_max_txt_chunk_sentences = 0 | |
| set_chunk_txt_by_paragraphs = False | |
| set_max_txt_chunk_paragraphs = 0 | |
| set_chunk_txt_by_tokens = False | |
| set_max_txt_chunk_tokens = 0 | |
| if args.share_public: | |
| share_public = args.share_public | |
| else: | |
| share_public = None | |
| if args.server_mode: | |
| server_mode = args.server_mode | |
| else: | |
| server_mode = None | |
| if args.server_mode is True: | |
| server_mode = True | |
| if args.port: | |
| server_port = args.port | |
| else: | |
| server_port = None | |
| ########## Logging setup | |
| logger = logging.getLogger() | |
| logger.setLevel(getattr(logging, args.log_level)) | |
| # Create console handler | |
| console_handler = logging.StreamHandler() | |
| console_handler.setLevel(getattr(logging, args.log_level)) | |
| console_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') | |
| console_handler.setFormatter(console_formatter) | |
| if args.log_file: | |
| # Create file handler | |
| file_handler = logging.FileHandler(args.log_file) | |
| file_handler.setLevel(getattr(logging, args.log_level)) | |
| file_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') | |
| file_handler.setFormatter(file_formatter) | |
| logger.addHandler(file_handler) | |
| logger.info(f"Log file created at: {args.log_file}") | |
| # Check if the user wants to use the local LLM from the script | |
| local_llm = args.local_llm | |
| logging.info(f'Local LLM flag: {local_llm}') | |
| # Check if the user wants to ingest a text file (singular or multiple from a folder) | |
| if args.input_path is not None: | |
| if os.path.isdir(args.input_path) and args.ingest_text_file: | |
| results = ingest_folder(args.input_path, keywords=args.keywords) | |
| for result in results: | |
| print(result) | |
| elif args.input_path.lower().endswith('.txt') and args.ingest_text_file: | |
| result = ingest_text_file(args.input_path, title=args.text_title, author=args.text_author, | |
| keywords=args.keywords) | |
| print(result) | |
| sys.exit(0) | |
| # Launch the GUI | |
| # This is huggingface so: | |
| if args.user_interface: | |
| if local_llm: | |
| local_llm_function() | |
| time.sleep(2) | |
| webbrowser.open_new_tab('http://127.0.0.1:7860') | |
| launch_ui() | |
| elif not args.input_path: | |
| parser.print_help() | |
| sys.exit(1) | |
| else: | |
| logging.info('Starting the transcription and summarization process.') | |
| logging.info(f'Input path: {args.input_path}') | |
| logging.info(f'API Name: {args.api_name}') | |
| logging.info(f'Number of speakers: {args.num_speakers}') | |
| logging.info(f'Whisper model: {args.whisper_model}') | |
| logging.info(f'Offset: {args.offset}') | |
| logging.info(f'VAD filter: {args.vad_filter}') | |
| logging.info(f'Log Level: {args.log_level}') | |
| logging.info(f'Demo Mode: {args.demo_mode}') | |
| logging.info(f'Custom Prompt: {args.custom_prompt}') | |
| logging.info(f'Overwrite: {args.overwrite}') | |
| logging.info(f'Rolling Summarization: {args.rolling_summarization}') | |
| logging.info(f'User Interface: {args.user_interface}') | |
| logging.info(f'Video Download: {args.video}') | |
| # logging.info(f'Save File location: {args.output_path}') | |
| # logging.info(f'Log File location: {args.log_file}') | |
| global api_name | |
| api_name = args.api_name | |
| ########## Custom Prompt setup | |
| custom_prompt_input = args.custom_prompt | |
| if not args.custom_prompt: | |
| logging.debug("No custom prompt defined, will use default") | |
| args.custom_prompt_input = ( | |
| "\n\nabove is the transcript of a video. " | |
| "Please read through the transcript carefully. Identify the main topics that are " | |
| "discussed over the course of the transcript. Then, summarize the key points about each " | |
| "main topic in a concise bullet point. The bullet points should cover the key " | |
| "information conveyed about each topic in the video, but should be much shorter than " | |
| "the full transcript. Please output your bullet point summary inside <bulletpoints> " | |
| "tags." | |
| ) | |
| print("No custom prompt defined, will use default") | |
| custom_prompt_input = args.custom_prompt | |
| else: | |
| logging.debug(f"Custom prompt defined, will use \n\nf{custom_prompt_input} \n\nas the prompt") | |
| print(f"Custom Prompt has been defined. Custom prompt: \n\n {args.custom_prompt}") | |
| summary = None # Initialize to ensure it's always defined | |
| if args.detail_level == None: | |
| args.detail_level = 0.01 | |
| # FIXME | |
| # if args.api_name and args.rolling_summarization and any( | |
| # key.startswith(args.api_name) and value is not None for key, value in api_keys.items()): | |
| # logging.info(f'MAIN: API used: {args.api_name}') | |
| # logging.info('MAIN: Rolling Summarization will be performed.') | |
| elif args.api_name: | |
| logging.info(f'MAIN: API used: {args.api_name}') | |
| logging.info('MAIN: Summarization (not rolling) will be performed.') | |
| else: | |
| logging.info('No API specified. Summarization will not be performed.') | |
| logging.debug("Platform check being performed...") | |
| platform_check() | |
| logging.debug("CUDA check being performed...") | |
| cuda_check() | |
| processing_choice = "cpu" | |
| logging.debug("ffmpeg check being performed...") | |
| check_ffmpeg() | |
| # download_ffmpeg() | |
| llm_model = args.llm_model or None | |
| # FIXME - dirty hack | |
| args.time_based = False | |
| try: | |
| results = main(args.input_path, api_name=args.api_name, api_key=args.api_key, | |
| num_speakers=args.num_speakers, whisper_model=args.whisper_model, offset=args.offset, | |
| vad_filter=args.vad_filter, download_video_flag=args.video, custom_prompt=args.custom_prompt_input, | |
| overwrite=args.overwrite, rolling_summarization=args.rolling_summarization, | |
| detail=args.detail_level, keywords=args.keywords, llm_model=args.llm_model, | |
| time_based=args.time_based, set_chunk_txt_by_words=set_chunk_txt_by_words, | |
| set_max_txt_chunk_words=set_max_txt_chunk_words, | |
| set_chunk_txt_by_sentences=set_chunk_txt_by_sentences, | |
| set_max_txt_chunk_sentences=set_max_txt_chunk_sentences, | |
| set_chunk_txt_by_paragraphs=set_chunk_txt_by_paragraphs, | |
| set_max_txt_chunk_paragraphs=set_max_txt_chunk_paragraphs, | |
| set_chunk_txt_by_tokens=set_chunk_txt_by_tokens, | |
| set_max_txt_chunk_tokens=set_max_txt_chunk_tokens) | |
| logging.info('Transcription process completed.') | |
| atexit.register(cleanup_process) | |
| except Exception as e: | |
| logging.error('An error occurred during the transcription process.') | |
| logging.error(str(e)) | |
| sys.exit(1) | |
| finally: | |
| cleanup_process() | |