File size: 16,526 Bytes
d136a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92971be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d136a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92971be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d136a46
92971be
 
 
d136a46
 
92971be
 
 
 
 
d136a46
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# #!/usr/bin/env python
# """
# Gradio App for NYC Taxi Fare Prediction & Road Route Visualization using OSRM

# Requirements:
#     pip install torch gradio requests polyline folium pandas numpy
# """

# import torch
# import torch.nn as nn
# import numpy as np
# import pandas as pd
# import requests
# import polyline
# import folium
# import gradio as gr

# # -----------------------------
# # Model Definition (TabularModel)
# # -----------------------------
# class TabularModel(nn.Module):
#     def __init__(self, emb_szs, n_cont, out_sz, layers, p=0.5):
#         """
#         Model for tabular data combining embeddings for categorical variables and
#         a feed-forward network for continuous features.
#         """
#         super().__init__()
#         self.embeds = nn.ModuleList([nn.Embedding(ni, nf) for ni, nf in emb_szs])
#         self.emb_drop = nn.Dropout(p)
#         self.bn_cont = nn.BatchNorm1d(n_cont)
        
#         n_emb = sum([nf for _, nf in emb_szs])
#         n_in = n_emb + n_cont
        
#         layerlist = []
#         for i in layers:
#             layerlist.append(nn.Linear(n_in, i))
#             layerlist.append(nn.ReLU(inplace=True))
#             layerlist.append(nn.BatchNorm1d(i))
#             layerlist.append(nn.Dropout(p))
#             n_in = i
#         layerlist.append(nn.Linear(layers[-1], out_sz))
#         self.layers = nn.Sequential(*layerlist)
    
#     def forward(self, x_cat, x_cont):
#         embeddings = []
#         for i, e in enumerate(self.embeds):
#             embeddings.append(e(x_cat[:, i]))
#         x = torch.cat(embeddings, 1)
#         x = self.emb_drop(x)
        
#         x_cont = self.bn_cont(x_cont)
#         x = torch.cat([x, x_cont], 1)
#         x = self.layers(x)
#         return x

# # -----------------------------
# # Load the trained model
# # -----------------------------
# # These parameters must match those used during training.
# emb_szs = [(24, 12), (2, 1), (7, 4)]
# n_cont = 6  # [pickup_lat, pickup_long, dropoff_lat, dropoff_long, passenger_count, dist_km]
# out_sz = 1
# layers = [200, 100]
# p = 0.4

# model = TabularModel(emb_szs, n_cont, out_sz, layers, p)
# # Load model state (using weights_only=True to address the warning)
# model.load_state_dict(torch.load("TaxiFareRegrModel.pt", map_location=torch.device("cpu"), weights_only=True))
# model.eval()

# # -----------------------------
# # Helper Function: Haversine
# # -----------------------------
# def haversine_distance_coords(lat1, lon1, lat2, lon2):
#     """Compute haversine distance (in km) between two coordinate pairs."""
#     r = 6371  # Earth's radius in kilometers
#     phi1 = np.radians(lat1)
#     phi2 = np.radians(lat2)
#     delta_phi = np.radians(lat2 - lat1)
#     delta_lambda = np.radians(lon2 - lon1)
#     a = np.sin(delta_phi/2)**2 + np.cos(phi1)*np.cos(phi2)*np.sin(delta_lambda/2)**2
#     c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a))
#     return r * c

# # -----------------------------
# # OSRM Route Retrieval
# # -----------------------------
# def get_osrm_route(lat1, lon1, lat2, lon2):
#     """
#     Query OSRM for a route between (lat1, lon1) and (lat2, lon2).
#     Returns:
#       - route_points: list of (lat, lon) tuples for the route polyline
#       - distance_m: route distance in meters (from OSRM)
#       - duration_s: route duration in seconds (from OSRM)
#     """
#     # OSRM expects coordinates as "lon,lat;lon,lat"
#     coords = f"{lon1},{lat1};{lon2},{lat2}"
#     OSRM_URL = f"http://router.project-osrm.org/route/v1/driving/{coords}?overview=full&geometries=polyline"
    
#     response = requests.get(OSRM_URL)
#     response.raise_for_status()
#     data = response.json()
    
#     if data.get("code") != "Ok":
#         raise Exception("Route not found")
    
#     route = data["routes"][0]
#     encoded_poly = route["geometry"]
#     route_points = polyline.decode(encoded_poly)
#     distance_m = route["distance"]
#     duration_s = route["duration"]
#     return route_points, distance_m, duration_s

# # -----------------------------
# # Main Prediction & Mapping Function
# # -----------------------------
# def predict_fare_and_map(plat, plong, dlat, dlong, psngr, dt):
#     """
#     1. Process pickup datetime to extract categorical features.
#     2. Compute haversine distance for the model input.
#     3. Use the PyTorch model to predict the taxi fare.
#     4. Query OSRM for the actual road route geometry & distance.
#     5. Draw a Folium map with the OSRM route (blue line) and markers.
#     6. Return a text string with predicted fare and route distance, plus the map HTML.
#     """
#     # Process datetime
#     try:
#         pickup_dt = pd.to_datetime(dt)
#     except Exception as e:
#         return f"Error parsing date/time: {e}", ""
    
#     hour = pickup_dt.hour
#     am_or_pm = 0 if hour < 12 else 1
#     weekday_str = pickup_dt.strftime("%a")
#     weekday_map = {'Fri': 0, 'Mon': 1, 'Sat': 2, 'Sun': 3, 'Thu': 4, 'Tue': 5, 'Wed': 6}
#     weekday = weekday_map.get(weekday_str, 0)
    
#     # Prepare tensors for model input (use haversine distance)
#     dist_km = haversine_distance_coords(plat, plong, dlat, dlong)
#     cat_array = np.array([[hour, am_or_pm, weekday]])
#     cat_tensor = torch.tensor(cat_array, dtype=torch.int64)
#     cont_array = np.array([[plat, plong, dlat, dlong, psngr, dist_km]])
#     cont_tensor = torch.tensor(cont_array, dtype=torch.float)
    
#     # Predict fare
#     with torch.no_grad():
#         pred = model(cat_tensor, cont_tensor)
#     fare_pred = pred.item()
    
#     # Get route from OSRM
#     try:
#         route_points, route_distance_m, route_duration_s = get_osrm_route(plat, plong, dlat, dlong)
#     except Exception as e:
#         return f"Error from OSRM: {e}", ""
    
#     # Create Folium map centered between pickup & dropoff
#     mid_lat = (plat + dlat) / 2
#     mid_lon = (plong + dlong) / 2
#     m = folium.Map(location=[mid_lat, mid_lon], zoom_start=12)
    
#     # Add markers
#     folium.Marker([plat, plong], icon=folium.Icon(color="green"), tooltip="Pickup").add_to(m)
#     folium.Marker([dlat, dlong], icon=folium.Icon(color="red"), tooltip="Dropoff").add_to(m)
    
#     # Draw the route polyline (blue line) with popup showing OSRM distance
#     folium.PolyLine(
#         route_points,
#         color="blue",
#         weight=3,
#         opacity=0.7,
#         popup=f"OSRM Distance: {route_distance_m/1000:.2f} km"
#     ).add_to(m)
    
#     map_html = m._repr_html_()
    
#     route_distance_km = route_distance_m / 1000
#     output_text = (f"Predicted Fare: ${fare_pred:.2f}\n"
#                    f"Route Distance (OSRM): {route_distance_km:.2f} km")
#     return output_text, map_html

# # -----------------------------
# # Gradio Interface
# # -----------------------------
# iface = gr.Interface(
#     fn=predict_fare_and_map,
#     inputs=[
#         gr.Number(label="Pickup Latitude", value=40.75),
#         gr.Number(label="Pickup Longitude", value=-73.99),
#         gr.Number(label="Dropoff Latitude", value=40.73),
#         gr.Number(label="Dropoff Longitude", value=-73.98),
#         gr.Number(label="Passenger Count", value=1),
#         gr.Textbox(label="Pickup Date and Time (YYYY-MM-DD HH:MM:SS)", value="2010-04-19 08:17:56")
#     ],
#     outputs=[
#         gr.Textbox(label="Prediction & Distance"),
#         gr.HTML(label="Map")
#     ],
#     title="NYC Taxi Fare Prediction with OSRM Road Route",
#     description=(
#         "Enter pickup/dropoff coordinates, passenger count, and pickup datetime to predict the taxi fare. "
#         "The app displays the actual road route (blue line) from OSRM on a Folium map."
#     )
# )

# if __name__ == "__main__":
#     iface.launch()

#!/usr/bin/env python
"""
Gradio App for NYC Taxi Fare Prediction & Road Route Visualization using OSRM

Requirements:
    pip install torch gradio requests polyline folium pandas numpy
"""

import torch
import torch.nn as nn
import numpy as np
import pandas as pd
import requests
import polyline
import folium
import gradio as gr

# -----------------------------
# Model Definition (TabularModel)
# -----------------------------
class TabularModel(nn.Module):
    def __init__(self, emb_szs, n_cont, out_sz, layers, p=0.5):
        """
        Model for tabular data combining embeddings for categorical variables and
        a feed-forward network for continuous features.
        """
        super().__init__()
        self.embeds = nn.ModuleList([nn.Embedding(ni, nf) for ni, nf in emb_szs])
        self.emb_drop = nn.Dropout(p)
        self.bn_cont = nn.BatchNorm1d(n_cont)
        
        n_emb = sum([nf for _, nf in emb_szs])
        n_in = n_emb + n_cont
        
        layerlist = []
        for i in layers:
            layerlist.append(nn.Linear(n_in, i))
            layerlist.append(nn.ReLU(inplace=True))
            layerlist.append(nn.BatchNorm1d(i))
            layerlist.append(nn.Dropout(p))
            n_in = i
        layerlist.append(nn.Linear(layers[-1], out_sz))
        self.layers = nn.Sequential(*layerlist)
    
    def forward(self, x_cat, x_cont):
        embeddings = []
        for i, e in enumerate(self.embeds):
            embeddings.append(e(x_cat[:, i]))
        x = torch.cat(embeddings, 1)
        x = self.emb_drop(x)
        
        x_cont = self.bn_cont(x_cont)
        x = torch.cat([x, x_cont], 1)
        x = self.layers(x)
        return x

# -----------------------------
# Load the trained model
# -----------------------------
# These parameters must match those used during training.
emb_szs = [(24, 12), (2, 1), (7, 4)]
n_cont = 6  # [pickup_lat, pickup_long, dropoff_lat, dropoff_long, passenger_count, dist_km]
out_sz = 1
layers = [200, 100]
p = 0.4

model = TabularModel(emb_szs, n_cont, out_sz, layers, p)
# Load model state (using weights_only=True to address the warning)
model.load_state_dict(torch.load("TaxiFareRegrModel.pt", map_location=torch.device("cpu"), weights_only=True))
model.eval()

# -----------------------------
# Helper Function: Haversine
# -----------------------------
def haversine_distance_coords(lat1, lon1, lat2, lon2):
    """Compute haversine distance (in km) between two coordinate pairs."""
    r = 6371  # Earth's radius in kilometers
    phi1 = np.radians(lat1)
    phi2 = np.radians(lat2)
    delta_phi = np.radians(lat2 - lat1)
    delta_lambda = np.radians(lon2 - lon1)
    a = np.sin(delta_phi/2)**2 + np.cos(phi1)*np.cos(phi2)*np.sin(delta_lambda/2)**2
    c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a))
    return r * c

# -----------------------------
# OSRM Route Retrieval
# -----------------------------
def get_osrm_route(lat1, lon1, lat2, lon2):
    """
    Query OSRM for a route between (lat1, lon1) and (lat2, lon2).
    Returns:
      - route_points: list of (lat, lon) tuples for the route polyline
      - distance_m: route distance in meters (from OSRM)
      - duration_s: route duration in seconds (from OSRM)
    """
    # OSRM expects coordinates as "lon,lat;lon,lat"
    coords = f"{lon1},{lat1};{lon2},{lat2}"
    OSRM_URL = f"http://router.project-osrm.org/route/v1/driving/{coords}?overview=full&geometries=polyline"
    
    response = requests.get(OSRM_URL)
    response.raise_for_status()
    data = response.json()
    
    if data.get("code") != "Ok":
        raise Exception("Route not found")
    
    route = data["routes"][0]
    encoded_poly = route["geometry"]
    route_points = polyline.decode(encoded_poly)
    distance_m = route["distance"]
    duration_s = route["duration"]
    return route_points, distance_m, duration_s

# -----------------------------
# Main Prediction & Mapping Function
# -----------------------------
def predict_fare_and_map(plat, plong, dlat, dlong, psngr, dt):
    """
    1. Process pickup datetime to extract categorical features.
    2. Compute haversine distance for the model input.
    3. Use the PyTorch model to predict the taxi fare.
    4. Query OSRM for the actual road route geometry & distance.
    5. Draw a Folium map with the OSRM route (blue line) and markers.
    6. Return a text string with predicted fare and route distance, plus the map HTML.
    """
    # Process datetime
    try:
        pickup_dt = pd.to_datetime(dt)
    except Exception as e:
        return f"Error parsing date/time: {e}", ""
    
    hour = pickup_dt.hour
    am_or_pm = 0 if hour < 12 else 1
    weekday_str = pickup_dt.strftime("%a")
    weekday_map = {'Fri': 0, 'Mon': 1, 'Sat': 2, 'Sun': 3, 'Thu': 4, 'Tue': 5, 'Wed': 6}
    weekday = weekday_map.get(weekday_str, 0)
    
    # Prepare tensors for model input (use haversine distance)
    dist_km = haversine_distance_coords(plat, plong, dlat, dlong)
    cat_array = np.array([[hour, am_or_pm, weekday]])
    cat_tensor = torch.tensor(cat_array, dtype=torch.int64)
    cont_array = np.array([[plat, plong, dlat, dlong, psngr, dist_km]])
    cont_tensor = torch.tensor(cont_array, dtype=torch.float)
    
    # Predict fare
    with torch.no_grad():
        pred = model(cat_tensor, cont_tensor)
    fare_pred = pred.item()
    
    # Get route from OSRM
    try:
        route_points, route_distance_m, route_duration_s = get_osrm_route(plat, plong, dlat, dlong)
    except Exception as e:
        return f"Error from OSRM: {e}", ""
    
    # Create Folium map centered between pickup & dropoff
    mid_lat = (plat + dlat) / 2
    mid_lon = (plong + dlong) / 2
    m = folium.Map(location=[mid_lat, mid_lon], zoom_start=12)
    
    # Add markers
    folium.Marker([plat, plong], icon=folium.Icon(color="green"), tooltip="Pickup").add_to(m)
    folium.Marker([dlat, dlong], icon=folium.Icon(color="red"), tooltip="Dropoff").add_to(m)
    
    # Draw the route polyline (blue line) with popup showing OSRM distance
    folium.PolyLine(
        route_points,
        color="blue",
        weight=3,
        opacity=0.7,
        popup=f"OSRM Distance: {route_distance_m/1000:.2f} km"
    ).add_to(m)
    
    map_html = m._repr_html_()
    
    route_distance_km = route_distance_m / 1000
    output_text = (f"Predicted Fare: ${fare_pred:.2f}\n"
                   f"Route Distance (OSRM): {route_distance_km:.2f} km")
    return output_text, map_html

# -----------------------------
# Example Locations (Popular NYC Spots)
# Each example is a list of 6 inputs:
# [pickup_lat, pickup_lon, dropoff_lat, dropoff_lon, passenger_count, pickup_datetime]
# -----------------------------
examples = [
    # 1. Times Square to Central Park (short ride)
    [40.7580, -73.9855, 40.7690, -73.9819, 1, "2010-04-19 08:17:56"],
    # 2. Times Square to JFK Airport (long ride)
    [40.7580, -73.9855, 40.6413, -73.7781, 1, "2010-04-19 08:17:56"],
    # 3. Grand Central Terminal to Empire State Building (very short ride)
    [40.7527, -73.9772, 40.7484, -73.9857, 1, "2010-04-19 08:17:56"],
    # 4. Brooklyn Bridge to Wall Street (short urban ride)
    [40.7061, -73.9969, 40.7069, -74.0113, 1, "2010-04-19 08:17:56"],
    # 5. Yankee Stadium to Central Park (moderate ride)
    [40.8296, -73.9262, 40.7829, -73.9654, 1, "2010-04-19 08:17:56"],
    # 6. Columbia University area to Rockefeller Center (cross-city ride)
    [40.8075, -73.9626, 40.7587, -73.9787, 1, "2010-04-19 08:17:56"],
    # 7. Battery Park to Central Park (longer ride across Manhattan)
    [40.7033, -74.0170, 40.7829, -73.9654, 1, "2010-04-19 08:17:56"]
]

# -----------------------------
# Gradio Interface
# -----------------------------
iface = gr.Interface(
    fn=predict_fare_and_map,
    inputs=[
        gr.Number(label="Pickup Latitude", value=40.75),
        gr.Number(label="Pickup Longitude", value=-73.99),
        gr.Number(label="Dropoff Latitude", value=40.73),
        gr.Number(label="Dropoff Longitude", value=-73.98),
        gr.Number(label="Passenger Count", value=1),
        gr.Textbox(label="Pickup Date and Time (YYYY-MM-DD HH:MM:SS)", value="2010-04-19 08:17:56")
    ],
    outputs=[
        gr.Textbox(label="Prediction & Distance"),
        gr.HTML(label="Map")
    ],
    examples=examples,
    title="NYC Taxi Fare Prediction with OSRM Road Route",
    description=(
        "Enter pickup/dropoff coordinates, passenger count, and pickup datetime to predict the taxi fare. "
        "The app displays the actual road route (blue line) from OSRM on a Folium map. "
        "You can also choose from several example routes between popular locations in New York."
    )
)

if __name__ == "__main__":
    iface.launch()