Spaces:
Runtime error
Runtime error
| import re | |
| import math | |
| import numpy as np | |
| import torch | |
| # Code from https://github.com/AUTOMATIC1111/stable-diffusion-webui/commit/8e2aeee4a127b295bfc880800e4a312e0f049b85, modified. | |
| class PromptChunk: | |
| """ | |
| This object contains token ids, weight (multipliers:1.4) and textual inversion embedding info for a chunk of prompt. | |
| If a prompt is short, it is represented by one PromptChunk, otherwise, multiple are necessary. | |
| Each PromptChunk contains an exact amount of tokens - 77, which includes one for start and end token, | |
| so just 75 tokens from prompt. | |
| """ | |
| def __init__(self): | |
| self.tokens = [] | |
| self.multipliers = [] | |
| self.fixes = [] | |
| class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module): | |
| """A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to | |
| have unlimited prompt length and assign weights to tokens in prompt. | |
| """ | |
| def __init__(self, text_encoder, enable_emphasis=True): | |
| super().__init__() | |
| self.device = lambda: text_encoder.device | |
| self.enable_emphasis = enable_emphasis | |
| """Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation, | |
| depending on model.""" | |
| self.chunk_length = 75 | |
| def empty_chunk(self): | |
| """creates an empty PromptChunk and returns it""" | |
| chunk = PromptChunk() | |
| chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1) | |
| chunk.multipliers = [1.0] * (self.chunk_length + 2) | |
| return chunk | |
| def get_target_prompt_token_count(self, token_count): | |
| """returns the maximum number of tokens a prompt of a known length can have before it requires one more PromptChunk to be represented""" | |
| return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length | |
| def tokenize_line(self, line): | |
| """ | |
| this transforms a single prompt into a list of PromptChunk objects - as many as needed to | |
| represent the prompt. | |
| Returns the list and the total number of tokens in the prompt. | |
| """ | |
| if self.enable_emphasis: | |
| parsed = parse_prompt_attention(line) | |
| else: | |
| parsed = [[line, 1.0]] | |
| tokenized = self.tokenize([text for text, _ in parsed]) | |
| chunks = [] | |
| chunk = PromptChunk() | |
| token_count = 0 | |
| last_comma = -1 | |
| def next_chunk(is_last=False): | |
| """puts current chunk into the list of results and produces the next one - empty; | |
| if is_last is true, tokens <end-of-text> tokens at the end won't add to token_count""" | |
| nonlocal token_count | |
| nonlocal last_comma | |
| nonlocal chunk | |
| if is_last: | |
| token_count += len(chunk.tokens) | |
| else: | |
| token_count += self.chunk_length | |
| to_add = self.chunk_length - len(chunk.tokens) | |
| if to_add > 0: | |
| chunk.tokens += [self.id_end] * to_add | |
| chunk.multipliers += [1.0] * to_add | |
| chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end] | |
| chunk.multipliers = [1.0] + chunk.multipliers + [1.0] | |
| last_comma = -1 | |
| chunks.append(chunk) | |
| chunk = PromptChunk() | |
| comma_padding_backtrack = 20 # default value in https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/6cff4401824299a983c8e13424018efc347b4a2b/modules/shared.py#L410 | |
| for tokens, (text, weight) in zip(tokenized, parsed): | |
| if text == "BREAK" and weight == -1: | |
| next_chunk() | |
| continue | |
| position = 0 | |
| while position < len(tokens): | |
| token = tokens[position] | |
| if token == self.comma_token: | |
| last_comma = len(chunk.tokens) | |
| # this is when we are at the end of alloted 75 tokens for the current chunk, and the current token is not a comma. opts.comma_padding_backtrack | |
| # is a setting that specifies that if there is a comma nearby, the text after the comma should be moved out of this chunk and into the next. | |
| elif ( | |
| comma_padding_backtrack != 0 | |
| and len(chunk.tokens) == self.chunk_length | |
| and last_comma != -1 | |
| and len(chunk.tokens) - last_comma <= comma_padding_backtrack | |
| ): | |
| break_location = last_comma + 1 | |
| reloc_tokens = chunk.tokens[break_location:] | |
| reloc_mults = chunk.multipliers[break_location:] | |
| chunk.tokens = chunk.tokens[:break_location] | |
| chunk.multipliers = chunk.multipliers[:break_location] | |
| next_chunk() | |
| chunk.tokens = reloc_tokens | |
| chunk.multipliers = reloc_mults | |
| if len(chunk.tokens) == self.chunk_length: | |
| next_chunk() | |
| chunk.tokens.append(token) | |
| chunk.multipliers.append(weight) | |
| position += 1 | |
| if len(chunk.tokens) > 0 or len(chunks) == 0: | |
| next_chunk(is_last=True) | |
| return chunks, token_count | |
| def process_texts(self, texts): | |
| """ | |
| Accepts a list of texts and calls tokenize_line() on each, with cache. Returns the list of results and maximum | |
| length, in tokens, of all texts. | |
| """ | |
| token_count = 0 | |
| cache = {} | |
| batch_chunks = [] | |
| for line in texts: | |
| if line in cache: | |
| chunks = cache[line] | |
| else: | |
| chunks, current_token_count = self.tokenize_line(line) | |
| token_count = max(current_token_count, token_count) | |
| cache[line] = chunks | |
| batch_chunks.append(chunks) | |
| return batch_chunks, token_count | |
| def forward(self, texts): | |
| """ | |
| Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts. | |
| Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will | |
| be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, and for SD2 it's 1024. | |
| An example shape returned by this function can be: (2, 77, 768). | |
| Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one elemenet | |
| is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream" | |
| """ | |
| batch_chunks, token_count = self.process_texts(texts) | |
| chunk_count = max([len(x) for x in batch_chunks]) | |
| zs = [] | |
| ts = [] | |
| for i in range(chunk_count): | |
| batch_chunk = [ | |
| chunks[i] if i < len(chunks) else self.empty_chunk() | |
| for chunks in batch_chunks | |
| ] | |
| tokens = [x.tokens for x in batch_chunk] | |
| multipliers = [x.multipliers for x in batch_chunk] | |
| # self.embeddings.fixes = [x.fixes for x in batch_chunk] | |
| # for fixes in self.embeddings.fixes: | |
| # for position, embedding in fixes: | |
| # used_embeddings[embedding.name] = embedding | |
| z = self.process_tokens(tokens, multipliers) | |
| zs.append(z) | |
| ts.append(tokens) | |
| return np.hstack(ts), torch.hstack(zs) | |
| def process_tokens(self, remade_batch_tokens, batch_multipliers): | |
| """ | |
| sends one single prompt chunk to be encoded by transformers neural network. | |
| remade_batch_tokens is a batch of tokens - a list, where every element is a list of tokens; usually | |
| there are exactly 77 tokens in the list. batch_multipliers is the same but for multipliers instead of tokens. | |
| Multipliers are used to give more or less weight to the outputs of transformers network. Each multiplier | |
| corresponds to one token. | |
| """ | |
| tokens = torch.asarray(remade_batch_tokens).to(self.device()) | |
| # this is for SD2: SD1 uses the same token for padding and end of text, while SD2 uses different ones. | |
| if self.id_end != self.id_pad: | |
| for batch_pos in range(len(remade_batch_tokens)): | |
| index = remade_batch_tokens[batch_pos].index(self.id_end) | |
| tokens[batch_pos, index + 1 : tokens.shape[1]] = self.id_pad | |
| z = self.encode_with_transformers(tokens) | |
| # restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise | |
| batch_multipliers = torch.asarray(batch_multipliers).to(self.device()) | |
| original_mean = z.mean() | |
| z = z * batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape) | |
| new_mean = z.mean() | |
| z = z * (original_mean / new_mean) | |
| return z | |
| class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase): | |
| def __init__(self, tokenizer, text_encoder): | |
| super().__init__(text_encoder) | |
| self.tokenizer = tokenizer | |
| self.text_encoder = text_encoder | |
| vocab = self.tokenizer.get_vocab() | |
| self.comma_token = vocab.get(",</w>", None) | |
| self.token_mults = {} | |
| tokens_with_parens = [ | |
| (k, v) | |
| for k, v in vocab.items() | |
| if "(" in k or ")" in k or "[" in k or "]" in k | |
| ] | |
| for text, ident in tokens_with_parens: | |
| mult = 1.0 | |
| for c in text: | |
| if c == "[": | |
| mult /= 1.1 | |
| if c == "]": | |
| mult *= 1.1 | |
| if c == "(": | |
| mult *= 1.1 | |
| if c == ")": | |
| mult /= 1.1 | |
| if mult != 1.0: | |
| self.token_mults[ident] = mult | |
| self.id_start = self.tokenizer.bos_token_id | |
| self.id_end = self.tokenizer.eos_token_id | |
| self.id_pad = self.id_end | |
| def tokenize(self, texts): | |
| tokenized = self.tokenizer( | |
| texts, truncation=False, add_special_tokens=False | |
| )["input_ids"] | |
| return tokenized | |
| def encode_with_transformers(self, tokens): | |
| CLIP_stop_at_last_layers = 1 | |
| tokens = tokens.to(self.text_encoder.device) | |
| outputs = self.text_encoder(tokens, output_hidden_states=True) | |
| if CLIP_stop_at_last_layers > 1: | |
| z = outputs.hidden_states[-CLIP_stop_at_last_layers] | |
| z = self.text_encoder.text_model.final_layer_norm(z) | |
| else: | |
| z = outputs.last_hidden_state | |
| return z | |
| re_attention = re.compile( | |
| r""" | |
| \\\(| | |
| \\\)| | |
| \\\[| | |
| \\]| | |
| \\\\| | |
| \\| | |
| \(| | |
| \[| | |
| :([+-]?[.\d]+)\)| | |
| \)| | |
| ]| | |
| [^\\()\[\]:]+| | |
| : | |
| """, | |
| re.X, | |
| ) | |
| re_break = re.compile(r"\s*\bBREAK\b\s*", re.S) | |
| def parse_prompt_attention(text): | |
| """ | |
| Parses a string with attention tokens and returns a list of pairs: text and its associated weight. | |
| Accepted tokens are: | |
| (abc) - increases attention to abc by a multiplier of 1.1 | |
| (abc:3.12) - increases attention to abc by a multiplier of 3.12 | |
| [abc] - decreases attention to abc by a multiplier of 1.1 | |
| \( - literal character '(' | |
| \[ - literal character '[' | |
| \) - literal character ')' | |
| \] - literal character ']' | |
| \\ - literal character '\' | |
| anything else - just text | |
| >>> parse_prompt_attention('normal text') | |
| [['normal text', 1.0]] | |
| >>> parse_prompt_attention('an (important) word') | |
| [['an ', 1.0], ['important', 1.1], [' word', 1.0]] | |
| >>> parse_prompt_attention('(unbalanced') | |
| [['unbalanced', 1.1]] | |
| >>> parse_prompt_attention('\(literal\]') | |
| [['(literal]', 1.0]] | |
| >>> parse_prompt_attention('(unnecessary)(parens)') | |
| [['unnecessaryparens', 1.1]] | |
| >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') | |
| [['a ', 1.0], | |
| ['house', 1.5730000000000004], | |
| [' ', 1.1], | |
| ['on', 1.0], | |
| [' a ', 1.1], | |
| ['hill', 0.55], | |
| [', sun, ', 1.1], | |
| ['sky', 1.4641000000000006], | |
| ['.', 1.1]] | |
| """ | |
| res = [] | |
| round_brackets = [] | |
| square_brackets = [] | |
| round_bracket_multiplier = 1.1 | |
| square_bracket_multiplier = 1 / 1.1 | |
| def multiply_range(start_position, multiplier): | |
| for p in range(start_position, len(res)): | |
| res[p][1] *= multiplier | |
| for m in re_attention.finditer(text): | |
| text = m.group(0) | |
| weight = m.group(1) | |
| if text.startswith("\\"): | |
| res.append([text[1:], 1.0]) | |
| elif text == "(": | |
| round_brackets.append(len(res)) | |
| elif text == "[": | |
| square_brackets.append(len(res)) | |
| elif weight is not None and len(round_brackets) > 0: | |
| multiply_range(round_brackets.pop(), float(weight)) | |
| elif text == ")" and len(round_brackets) > 0: | |
| multiply_range(round_brackets.pop(), round_bracket_multiplier) | |
| elif text == "]" and len(square_brackets) > 0: | |
| multiply_range(square_brackets.pop(), square_bracket_multiplier) | |
| else: | |
| parts = re.split(re_break, text) | |
| for i, part in enumerate(parts): | |
| if i > 0: | |
| res.append(["BREAK", -1]) | |
| res.append([part, 1.0]) | |
| for pos in round_brackets: | |
| multiply_range(pos, round_bracket_multiplier) | |
| for pos in square_brackets: | |
| multiply_range(pos, square_bracket_multiplier) | |
| if len(res) == 0: | |
| res = [["", 1.0]] | |
| # merge runs of identical weights | |
| i = 0 | |
| while i + 1 < len(res): | |
| if res[i][1] == res[i + 1][1]: | |
| res[i][0] += res[i + 1][0] | |
| res.pop(i + 1) | |
| else: | |
| i += 1 | |
| return res | |