Spaces:
Runtime error
Runtime error
| import importlib | |
| import inspect | |
| import math | |
| from pathlib import Path | |
| import re | |
| from collections import defaultdict | |
| from typing import List, Optional, Union | |
| import time | |
| import k_diffusion | |
| import numpy as np | |
| import PIL | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from einops import rearrange | |
| from k_diffusion.external import CompVisDenoiser, CompVisVDenoiser | |
| from modules.prompt_parser import FrozenCLIPEmbedderWithCustomWords | |
| from torch import einsum | |
| from torch.autograd.function import Function | |
| from diffusers import DiffusionPipeline | |
| from diffusers.utils import PIL_INTERPOLATION, is_accelerate_available | |
| from diffusers.utils import logging, randn_tensor | |
| import modules.safe as _ | |
| from safetensors.torch import load_file | |
| xformers_available = False | |
| try: | |
| import xformers | |
| xformers_available = True | |
| except ImportError: | |
| pass | |
| EPSILON = 1e-6 | |
| exists = lambda val: val is not None | |
| default = lambda val, d: val if exists(val) else d | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def get_attention_scores(attn, query, key, attention_mask=None): | |
| if attn.upcast_attention: | |
| query = query.float() | |
| key = key.float() | |
| attention_scores = torch.baddbmm( | |
| torch.empty( | |
| query.shape[0], | |
| query.shape[1], | |
| key.shape[1], | |
| dtype=query.dtype, | |
| device=query.device, | |
| ), | |
| query, | |
| key.transpose(-1, -2), | |
| beta=0, | |
| alpha=attn.scale, | |
| ) | |
| if attention_mask is not None: | |
| attention_scores = attention_scores + attention_mask | |
| if attn.upcast_softmax: | |
| attention_scores = attention_scores.float() | |
| return attention_scores | |
| class CrossAttnProcessor(nn.Module): | |
| def __call__( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| ): | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length) | |
| encoder_states = hidden_states | |
| is_xattn = False | |
| if encoder_hidden_states is not None: | |
| is_xattn = True | |
| img_state = encoder_hidden_states["img_state"] | |
| encoder_states = encoder_hidden_states["states"] | |
| weight_func = encoder_hidden_states["weight_func"] | |
| sigma = encoder_hidden_states["sigma"] | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(encoder_states) | |
| value = attn.to_v(encoder_states) | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| if is_xattn and isinstance(img_state, dict): | |
| # use torch.baddbmm method (slow) | |
| attention_scores = get_attention_scores(attn, query, key, attention_mask) | |
| w = img_state[sequence_length].to(query.device) | |
| cross_attention_weight = weight_func(w, sigma, attention_scores) | |
| attention_scores += torch.repeat_interleave( | |
| cross_attention_weight, repeats=attn.heads, dim=0 | |
| ) | |
| # calc probs | |
| attention_probs = attention_scores.softmax(dim=-1) | |
| attention_probs = attention_probs.to(query.dtype) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| elif xformers_available: | |
| hidden_states = xformers.ops.memory_efficient_attention( | |
| query.contiguous(), | |
| key.contiguous(), | |
| value.contiguous(), | |
| attn_bias=attention_mask, | |
| ) | |
| hidden_states = hidden_states.to(query.dtype) | |
| else: | |
| q_bucket_size = 512 | |
| k_bucket_size = 1024 | |
| # use flash-attention | |
| hidden_states = FlashAttentionFunction.apply( | |
| query.contiguous(), | |
| key.contiguous(), | |
| value.contiguous(), | |
| attention_mask, | |
| False, | |
| q_bucket_size, | |
| k_bucket_size, | |
| ) | |
| hidden_states = hidden_states.to(query.dtype) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| return hidden_states | |
| class ModelWrapper: | |
| def __init__(self, model, alphas_cumprod): | |
| self.model = model | |
| self.alphas_cumprod = alphas_cumprod | |
| def apply_model(self, *args, **kwargs): | |
| if len(args) == 3: | |
| encoder_hidden_states = args[-1] | |
| args = args[:2] | |
| if kwargs.get("cond", None) is not None: | |
| encoder_hidden_states = kwargs.pop("cond") | |
| return self.model( | |
| *args, encoder_hidden_states=encoder_hidden_states, **kwargs | |
| ).sample | |
| class StableDiffusionPipeline(DiffusionPipeline): | |
| _optional_components = ["safety_checker", "feature_extractor"] | |
| def __init__( | |
| self, | |
| vae, | |
| text_encoder, | |
| tokenizer, | |
| unet, | |
| scheduler, | |
| ): | |
| super().__init__() | |
| # get correct sigmas from LMS | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| ) | |
| self.setup_unet(self.unet) | |
| self.setup_text_encoder() | |
| def setup_text_encoder(self, n=1, new_encoder=None): | |
| if new_encoder is not None: | |
| self.text_encoder = new_encoder | |
| self.prompt_parser = FrozenCLIPEmbedderWithCustomWords(self.tokenizer, self.text_encoder) | |
| self.prompt_parser.CLIP_stop_at_last_layers = n | |
| def setup_unet(self, unet): | |
| unet = unet.to(self.device) | |
| model = ModelWrapper(unet, self.scheduler.alphas_cumprod) | |
| if self.scheduler.prediction_type == "v_prediction": | |
| self.k_diffusion_model = CompVisVDenoiser(model) | |
| else: | |
| self.k_diffusion_model = CompVisDenoiser(model) | |
| def get_scheduler(self, scheduler_type: str): | |
| library = importlib.import_module("k_diffusion") | |
| sampling = getattr(library, "sampling") | |
| return getattr(sampling, scheduler_type) | |
| def encode_sketchs(self, state, scale_ratio=8, g_strength=1.0, text_ids=None): | |
| uncond, cond = text_ids[0], text_ids[1] | |
| img_state = [] | |
| if state is None: | |
| return torch.FloatTensor(0) | |
| for k, v in state.items(): | |
| if v["map"] is None: | |
| continue | |
| v_input = self.tokenizer( | |
| k, | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| add_special_tokens=False, | |
| ).input_ids | |
| dotmap = v["map"] < 255 | |
| out = dotmap.astype(float) | |
| if v["mask_outsides"]: | |
| out[out==0] = -1 | |
| arr = torch.from_numpy( | |
| out * float(v["weight"]) * g_strength | |
| ) | |
| img_state.append((v_input, arr)) | |
| if len(img_state) == 0: | |
| return torch.FloatTensor(0) | |
| w_tensors = dict() | |
| cond = cond.tolist() | |
| uncond = uncond.tolist() | |
| for layer in self.unet.down_blocks: | |
| c = int(len(cond)) | |
| w, h = img_state[0][1].shape | |
| w_r, h_r = w // scale_ratio, h // scale_ratio | |
| ret_cond_tensor = torch.zeros((1, int(w_r * h_r), c), dtype=torch.float32) | |
| ret_uncond_tensor = torch.zeros((1, int(w_r * h_r), c), dtype=torch.float32) | |
| for v_as_tokens, img_where_color in img_state: | |
| is_in = 0 | |
| ret = ( | |
| F.interpolate( | |
| img_where_color.unsqueeze(0).unsqueeze(1), | |
| scale_factor=1 / scale_ratio, | |
| mode="bilinear", | |
| align_corners=True, | |
| ) | |
| .squeeze() | |
| .reshape(-1, 1) | |
| .repeat(1, len(v_as_tokens)) | |
| ) | |
| for idx, tok in enumerate(cond): | |
| if cond[idx : idx + len(v_as_tokens)] == v_as_tokens: | |
| is_in = 1 | |
| ret_cond_tensor[0, :, idx : idx + len(v_as_tokens)] += ret | |
| for idx, tok in enumerate(uncond): | |
| if uncond[idx : idx + len(v_as_tokens)] == v_as_tokens: | |
| is_in = 1 | |
| ret_uncond_tensor[0, :, idx : idx + len(v_as_tokens)] += ret | |
| if not is_in == 1: | |
| print(f"tokens {v_as_tokens} not found in text") | |
| w_tensors[w_r * h_r] = torch.cat([ret_uncond_tensor, ret_cond_tensor]) | |
| scale_ratio *= 2 | |
| return w_tensors | |
| def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): | |
| r""" | |
| Enable sliced attention computation. | |
| When this option is enabled, the attention module will split the input tensor in slices, to compute attention | |
| in several steps. This is useful to save some memory in exchange for a small speed decrease. | |
| Args: | |
| slice_size (`str` or `int`, *optional*, defaults to `"auto"`): | |
| When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | |
| a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, | |
| `attention_head_dim` must be a multiple of `slice_size`. | |
| """ | |
| if slice_size == "auto": | |
| # half the attention head size is usually a good trade-off between | |
| # speed and memory | |
| slice_size = self.unet.config.attention_head_dim // 2 | |
| self.unet.set_attention_slice(slice_size) | |
| def disable_attention_slicing(self): | |
| r""" | |
| Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go | |
| back to computing attention in one step. | |
| """ | |
| # set slice_size = `None` to disable `attention slicing` | |
| self.enable_attention_slicing(None) | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
| text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | |
| `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | |
| """ | |
| if is_accelerate_available(): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("Please install accelerate via `pip install accelerate`") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| for cpu_offloaded_model in [ | |
| self.unet, | |
| self.text_encoder, | |
| self.vae, | |
| self.safety_checker, | |
| ]: | |
| if cpu_offloaded_model is not None: | |
| cpu_offload(cpu_offloaded_model, device) | |
| def _execution_device(self): | |
| r""" | |
| Returns the device on which the pipeline's models will be executed. After calling | |
| `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
| hooks. | |
| """ | |
| if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def decode_latents(self, latents): | |
| latents = latents.to(self.device, dtype=self.vae.dtype) | |
| latents = 1 / 0.18215 * latents | |
| image = self.vae.decode(latents).sample | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| return image | |
| def check_inputs(self, prompt, height, width, callback_steps): | |
| if not isinstance(prompt, str) and not isinstance(prompt, list): | |
| raise ValueError( | |
| f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" | |
| ) | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError( | |
| f"`height` and `width` have to be divisible by 8 but are {height} and {width}." | |
| ) | |
| if (callback_steps is None) or ( | |
| callback_steps is not None | |
| and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| ): | |
| shape = (batch_size, num_channels_latents, height // 8, width // 8) | |
| if latents is None: | |
| if device.type == "mps": | |
| # randn does not work reproducibly on mps | |
| latents = torch.randn( | |
| shape, generator=generator, device="cpu", dtype=dtype | |
| ).to(device) | |
| else: | |
| latents = torch.randn( | |
| shape, generator=generator, device=device, dtype=dtype | |
| ) | |
| else: | |
| # if latents.shape != shape: | |
| # raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| return latents | |
| def preprocess(self, image): | |
| if isinstance(image, torch.Tensor): | |
| return image | |
| elif isinstance(image, PIL.Image.Image): | |
| image = [image] | |
| if isinstance(image[0], PIL.Image.Image): | |
| w, h = image[0].size | |
| w, h = map(lambda x: x - x % 8, (w, h)) # resize to integer multiple of 8 | |
| image = [ | |
| np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[ | |
| None, : | |
| ] | |
| for i in image | |
| ] | |
| image = np.concatenate(image, axis=0) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = image.transpose(0, 3, 1, 2) | |
| image = 2.0 * image - 1.0 | |
| image = torch.from_numpy(image) | |
| elif isinstance(image[0], torch.Tensor): | |
| image = torch.cat(image, dim=0) | |
| return image | |
| def img2img( | |
| self, | |
| prompt: Union[str, List[str]], | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| generator: Optional[torch.Generator] = None, | |
| image: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| latents=None, | |
| strength=1.0, | |
| pww_state=None, | |
| pww_attn_weight=1.0, | |
| sampler_name="", | |
| sampler_opt={}, | |
| start_time=-1, | |
| timeout=180, | |
| scale_ratio=8.0, | |
| ): | |
| sampler = self.get_scheduler(sampler_name) | |
| if image is not None: | |
| image = self.preprocess(image) | |
| image = image.to(self.vae.device, dtype=self.vae.dtype) | |
| init_latents = self.vae.encode(image).latent_dist.sample(generator) | |
| latents = 0.18215 * init_latents | |
| # 2. Define call parameters | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| device = self._execution_device | |
| latents = latents.to(device, dtype=self.unet.dtype) | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = True | |
| if guidance_scale <= 1.0: | |
| raise ValueError("has to use guidance_scale") | |
| # 3. Encode input prompt | |
| text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt]) | |
| text_embeddings = text_embeddings.to(self.unet.dtype) | |
| init_timestep = ( | |
| int(num_inference_steps / min(strength, 0.999)) if strength > 0 else 0 | |
| ) | |
| sigmas = self.get_sigmas(init_timestep, sampler_opt).to( | |
| text_embeddings.device, dtype=text_embeddings.dtype | |
| ) | |
| t_start = max(init_timestep - num_inference_steps, 0) | |
| sigma_sched = sigmas[t_start:] | |
| noise = randn_tensor( | |
| latents.shape, | |
| generator=generator, | |
| device=device, | |
| dtype=text_embeddings.dtype, | |
| ) | |
| latents = latents.to(device) | |
| latents = latents + noise * sigma_sched[0] | |
| # 5. Prepare latent variables | |
| self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device) | |
| self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to( | |
| latents.device | |
| ) | |
| img_state = self.encode_sketchs( | |
| pww_state, | |
| g_strength=pww_attn_weight, | |
| text_ids=text_ids, | |
| ) | |
| def model_fn(x, sigma): | |
| if start_time > 0 and timeout > 0: | |
| assert (time.time() - start_time) < timeout, "inference process timed out" | |
| latent_model_input = torch.cat([x] * 2) | |
| weight_func = lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max() | |
| encoder_state = { | |
| "img_state": img_state, | |
| "states": text_embeddings, | |
| "sigma": sigma[0], | |
| "weight_func": weight_func, | |
| } | |
| noise_pred = self.k_diffusion_model( | |
| latent_model_input, sigma, cond=encoder_state | |
| ) | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| return noise_pred | |
| sampler_args = self.get_sampler_extra_args_i2i(sigma_sched, sampler) | |
| latents = sampler(model_fn, latents, **sampler_args) | |
| # 8. Post-processing | |
| image = self.decode_latents(latents) | |
| # 10. Convert to PIL | |
| if output_type == "pil": | |
| image = self.numpy_to_pil(image) | |
| return (image,) | |
| def get_sigmas(self, steps, params): | |
| discard_next_to_last_sigma = params.get("discard_next_to_last_sigma", False) | |
| steps += 1 if discard_next_to_last_sigma else 0 | |
| if params.get("scheduler", None) == "karras": | |
| sigma_min, sigma_max = ( | |
| self.k_diffusion_model.sigmas[0].item(), | |
| self.k_diffusion_model.sigmas[-1].item(), | |
| ) | |
| sigmas = k_diffusion.sampling.get_sigmas_karras( | |
| n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=self.device | |
| ) | |
| else: | |
| sigmas = self.k_diffusion_model.get_sigmas(steps) | |
| if discard_next_to_last_sigma: | |
| sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) | |
| return sigmas | |
| # https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/48a15821de768fea76e66f26df83df3fddf18f4b/modules/sd_samplers.py#L454 | |
| def get_sampler_extra_args_t2i(self, sigmas, eta, steps, func): | |
| extra_params_kwargs = {} | |
| if "eta" in inspect.signature(func).parameters: | |
| extra_params_kwargs["eta"] = eta | |
| if "sigma_min" in inspect.signature(func).parameters: | |
| extra_params_kwargs["sigma_min"] = sigmas[0].item() | |
| extra_params_kwargs["sigma_max"] = sigmas[-1].item() | |
| if "n" in inspect.signature(func).parameters: | |
| extra_params_kwargs["n"] = steps | |
| else: | |
| extra_params_kwargs["sigmas"] = sigmas | |
| return extra_params_kwargs | |
| # https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/48a15821de768fea76e66f26df83df3fddf18f4b/modules/sd_samplers.py#L454 | |
| def get_sampler_extra_args_i2i(self, sigmas, func): | |
| extra_params_kwargs = {} | |
| if "sigma_min" in inspect.signature(func).parameters: | |
| ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last | |
| extra_params_kwargs["sigma_min"] = sigmas[-2] | |
| if "sigma_max" in inspect.signature(func).parameters: | |
| extra_params_kwargs["sigma_max"] = sigmas[0] | |
| if "n" in inspect.signature(func).parameters: | |
| extra_params_kwargs["n"] = len(sigmas) - 1 | |
| if "sigma_sched" in inspect.signature(func).parameters: | |
| extra_params_kwargs["sigma_sched"] = sigmas | |
| if "sigmas" in inspect.signature(func).parameters: | |
| extra_params_kwargs["sigmas"] = sigmas | |
| return extra_params_kwargs | |
| def txt2img( | |
| self, | |
| prompt: Union[str, List[str]], | |
| height: int = 512, | |
| width: int = 512, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| eta: float = 0.0, | |
| generator: Optional[torch.Generator] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| callback_steps: Optional[int] = 1, | |
| upscale=False, | |
| upscale_x: float = 2.0, | |
| upscale_method: str = "bicubic", | |
| upscale_antialias: bool = False, | |
| upscale_denoising_strength: int = 0.7, | |
| pww_state=None, | |
| pww_attn_weight=1.0, | |
| sampler_name="", | |
| sampler_opt={}, | |
| start_time=-1, | |
| timeout=180, | |
| ): | |
| sampler = self.get_scheduler(sampler_name) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs(prompt, height, width, callback_steps) | |
| # 2. Define call parameters | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = True | |
| if guidance_scale <= 1.0: | |
| raise ValueError("has to use guidance_scale") | |
| # 3. Encode input prompt | |
| text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt]) | |
| text_embeddings = text_embeddings.to(self.unet.dtype) | |
| # 4. Prepare timesteps | |
| sigmas = self.get_sigmas(num_inference_steps, sampler_opt).to( | |
| text_embeddings.device, dtype=text_embeddings.dtype | |
| ) | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.in_channels | |
| latents = self.prepare_latents( | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| text_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| latents = latents * sigmas[0] | |
| self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device) | |
| self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to( | |
| latents.device | |
| ) | |
| img_state = self.encode_sketchs( | |
| pww_state, | |
| g_strength=pww_attn_weight, | |
| text_ids=text_ids, | |
| ) | |
| def model_fn(x, sigma): | |
| if start_time > 0 and timeout > 0: | |
| assert (time.time() - start_time) < timeout, "inference process timed out" | |
| latent_model_input = torch.cat([x] * 2) | |
| weight_func = lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max() | |
| encoder_state = { | |
| "img_state": img_state, | |
| "states": text_embeddings, | |
| "sigma": sigma[0], | |
| "weight_func": weight_func, | |
| } | |
| noise_pred = self.k_diffusion_model( | |
| latent_model_input, sigma, cond=encoder_state | |
| ) | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| return noise_pred | |
| extra_args = self.get_sampler_extra_args_t2i( | |
| sigmas, eta, num_inference_steps, sampler | |
| ) | |
| latents = sampler(model_fn, latents, **extra_args) | |
| if upscale: | |
| target_height = height * upscale_x | |
| target_width = width * upscale_x | |
| vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| latents = torch.nn.functional.interpolate( | |
| latents, | |
| size=( | |
| int(target_height // vae_scale_factor), | |
| int(target_width // vae_scale_factor), | |
| ), | |
| mode=upscale_method, | |
| antialias=upscale_antialias, | |
| ) | |
| return self.img2img( | |
| prompt=prompt, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| negative_prompt=negative_prompt, | |
| generator=generator, | |
| latents=latents, | |
| strength=upscale_denoising_strength, | |
| sampler_name=sampler_name, | |
| sampler_opt=sampler_opt, | |
| pww_state=None, | |
| pww_attn_weight=pww_attn_weight / 2, | |
| ) | |
| # 8. Post-processing | |
| image = self.decode_latents(latents) | |
| # 10. Convert to PIL | |
| if output_type == "pil": | |
| image = self.numpy_to_pil(image) | |
| return (image,) | |
| class FlashAttentionFunction(Function): | |
| def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): | |
| """Algorithm 2 in the paper""" | |
| device = q.device | |
| max_neg_value = -torch.finfo(q.dtype).max | |
| qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) | |
| o = torch.zeros_like(q) | |
| all_row_sums = torch.zeros((*q.shape[:-1], 1), device=device) | |
| all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, device=device) | |
| scale = q.shape[-1] ** -0.5 | |
| if not exists(mask): | |
| mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size) | |
| else: | |
| mask = rearrange(mask, "b n -> b 1 1 n") | |
| mask = mask.split(q_bucket_size, dim=-1) | |
| row_splits = zip( | |
| q.split(q_bucket_size, dim=-2), | |
| o.split(q_bucket_size, dim=-2), | |
| mask, | |
| all_row_sums.split(q_bucket_size, dim=-2), | |
| all_row_maxes.split(q_bucket_size, dim=-2), | |
| ) | |
| for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): | |
| q_start_index = ind * q_bucket_size - qk_len_diff | |
| col_splits = zip( | |
| k.split(k_bucket_size, dim=-2), | |
| v.split(k_bucket_size, dim=-2), | |
| ) | |
| for k_ind, (kc, vc) in enumerate(col_splits): | |
| k_start_index = k_ind * k_bucket_size | |
| attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale | |
| if exists(row_mask): | |
| attn_weights.masked_fill_(~row_mask, max_neg_value) | |
| if causal and q_start_index < (k_start_index + k_bucket_size - 1): | |
| causal_mask = torch.ones( | |
| (qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device | |
| ).triu(q_start_index - k_start_index + 1) | |
| attn_weights.masked_fill_(causal_mask, max_neg_value) | |
| block_row_maxes = attn_weights.amax(dim=-1, keepdims=True) | |
| attn_weights -= block_row_maxes | |
| exp_weights = torch.exp(attn_weights) | |
| if exists(row_mask): | |
| exp_weights.masked_fill_(~row_mask, 0.0) | |
| block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp( | |
| min=EPSILON | |
| ) | |
| new_row_maxes = torch.maximum(block_row_maxes, row_maxes) | |
| exp_values = einsum("... i j, ... j d -> ... i d", exp_weights, vc) | |
| exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) | |
| exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes) | |
| new_row_sums = ( | |
| exp_row_max_diff * row_sums | |
| + exp_block_row_max_diff * block_row_sums | |
| ) | |
| oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_( | |
| (exp_block_row_max_diff / new_row_sums) * exp_values | |
| ) | |
| row_maxes.copy_(new_row_maxes) | |
| row_sums.copy_(new_row_sums) | |
| lse = all_row_sums.log() + all_row_maxes | |
| ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) | |
| ctx.save_for_backward(q, k, v, o, lse) | |
| return o | |
| def backward(ctx, do): | |
| """Algorithm 4 in the paper""" | |
| causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args | |
| q, k, v, o, lse = ctx.saved_tensors | |
| device = q.device | |
| max_neg_value = -torch.finfo(q.dtype).max | |
| qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) | |
| dq = torch.zeros_like(q) | |
| dk = torch.zeros_like(k) | |
| dv = torch.zeros_like(v) | |
| row_splits = zip( | |
| q.split(q_bucket_size, dim=-2), | |
| o.split(q_bucket_size, dim=-2), | |
| do.split(q_bucket_size, dim=-2), | |
| mask, | |
| lse.split(q_bucket_size, dim=-2), | |
| dq.split(q_bucket_size, dim=-2), | |
| ) | |
| for ind, (qc, oc, doc, row_mask, lsec, dqc) in enumerate(row_splits): | |
| q_start_index = ind * q_bucket_size - qk_len_diff | |
| col_splits = zip( | |
| k.split(k_bucket_size, dim=-2), | |
| v.split(k_bucket_size, dim=-2), | |
| dk.split(k_bucket_size, dim=-2), | |
| dv.split(k_bucket_size, dim=-2), | |
| ) | |
| for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits): | |
| k_start_index = k_ind * k_bucket_size | |
| attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale | |
| if causal and q_start_index < (k_start_index + k_bucket_size - 1): | |
| causal_mask = torch.ones( | |
| (qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device | |
| ).triu(q_start_index - k_start_index + 1) | |
| attn_weights.masked_fill_(causal_mask, max_neg_value) | |
| p = torch.exp(attn_weights - lsec) | |
| if exists(row_mask): | |
| p.masked_fill_(~row_mask, 0.0) | |
| dv_chunk = einsum("... i j, ... i d -> ... j d", p, doc) | |
| dp = einsum("... i d, ... j d -> ... i j", doc, vc) | |
| D = (doc * oc).sum(dim=-1, keepdims=True) | |
| ds = p * scale * (dp - D) | |
| dq_chunk = einsum("... i j, ... j d -> ... i d", ds, kc) | |
| dk_chunk = einsum("... i j, ... i d -> ... j d", ds, qc) | |
| dqc.add_(dq_chunk) | |
| dkc.add_(dk_chunk) | |
| dvc.add_(dv_chunk) | |
| return dq, dk, dv, None, None, None, None | |