Update app.py
Browse files
app.py
CHANGED
@@ -198,40 +198,210 @@ def submit_function(
|
|
198 |
return new_result_image
|
199 |
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
def person_example_fn(image_path):
|
202 |
return image_path
|
203 |
|
204 |
-
HEADER = ""
|
205 |
-
<h1 style="text-align: center;"> 🐈 CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models </h1>
|
206 |
-
<div style="display: flex; justify-content: center; align-items: center;">
|
207 |
-
<a href="http://arxiv.org/abs/2407.15886" style="margin: 0 2px;">
|
208 |
-
<img src='https://img.shields.io/badge/arXiv-2407.15886-red?style=flat&logo=arXiv&logoColor=red' alt='arxiv'>
|
209 |
-
</a>
|
210 |
-
<a href='https://huggingface.co/zhengchong/CatVTON' style="margin: 0 2px;">
|
211 |
-
<img src='https://img.shields.io/badge/Hugging Face-ckpts-orange?style=flat&logo=HuggingFace&logoColor=orange' alt='huggingface'>
|
212 |
-
</a>
|
213 |
-
<a href="https://github.com/Zheng-Chong/CatVTON" style="margin: 0 2px;">
|
214 |
-
<img src='https://img.shields.io/badge/GitHub-Repo-blue?style=flat&logo=GitHub' alt='GitHub'>
|
215 |
-
</a>
|
216 |
-
<a href="http://120.76.142.206:8888" style="margin: 0 2px;">
|
217 |
-
<img src='https://img.shields.io/badge/Demo-Gradio-gold?style=flat&logo=Gradio&logoColor=red' alt='Demo'>
|
218 |
-
</a>
|
219 |
-
<a href="https://huggingface.co/spaces/zhengchong/CatVTON" style="margin: 0 2px;">
|
220 |
-
<img src='https://img.shields.io/badge/Space-ZeroGPU-orange?style=flat&logo=Gradio&logoColor=red' alt='Demo'>
|
221 |
-
</a>
|
222 |
-
<a href='https://zheng-chong.github.io/CatVTON/' style="margin: 0 2px;">
|
223 |
-
<img src='https://img.shields.io/badge/Webpage-Project-silver?style=flat&logo=&logoColor=orange' alt='webpage'>
|
224 |
-
</a>
|
225 |
-
<a href="https://github.com/Zheng-Chong/CatVTON/LICENCE" style="margin: 0 2px;">
|
226 |
-
<img src='https://img.shields.io/badge/License-CC BY--NC--SA--4.0-lightgreen?style=flat&logo=Lisence' alt='License'>
|
227 |
-
</a>
|
228 |
-
</div>
|
229 |
-
<br>
|
230 |
-
· This demo and our weights are only for <span>Non-commercial Use</span>. <br>
|
231 |
-
· You can try CatVTON in our <a href="https://huggingface.co/spaces/zhengchong/CatVTON">HuggingFace Space</a> or our <a href="http://120.76.142.206:8888">online demo</a> (run on 3090). <br>
|
232 |
-
· Thanks to <a href="https://huggingface.co/zero-gpu-explorers">ZeroGPU</a> for providing A100 for our <a href="https://huggingface.co/spaces/zhengchong/CatVTON">HuggingFace Space</a>. <br>
|
233 |
-
· SafetyChecker is set to filter NSFW content, but it may block normal results too. Please adjust the <span>`seed`</span> for normal outcomes.<br>
|
234 |
-
"""
|
235 |
|
236 |
def app_gradio():
|
237 |
with gr.Blocks(title="CatVTON") as demo:
|
|
|
198 |
return new_result_image
|
199 |
|
200 |
|
201 |
+
@spaces.GPU(duration=120)
|
202 |
+
def submit_function(
|
203 |
+
person_image,
|
204 |
+
cloth_image,
|
205 |
+
cloth_type,
|
206 |
+
num_inference_steps,
|
207 |
+
guidance_scale,
|
208 |
+
seed,
|
209 |
+
show_type
|
210 |
+
):
|
211 |
+
person_image, mask = person_image["background"], person_image["layers"][0]
|
212 |
+
mask = Image.open(mask).convert("L")
|
213 |
+
if len(np.unique(np.array(mask))) == 1:
|
214 |
+
mask = None
|
215 |
+
else:
|
216 |
+
mask = np.array(mask)
|
217 |
+
mask[mask > 0] = 255
|
218 |
+
mask = Image.fromarray(mask)
|
219 |
+
|
220 |
+
tmp_folder = args.output_dir
|
221 |
+
date_str = datetime.now().strftime("%Y%m%d%H%M%S")
|
222 |
+
result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png")
|
223 |
+
if not os.path.exists(os.path.join(tmp_folder, date_str[:8])):
|
224 |
+
os.makedirs(os.path.join(tmp_folder, date_str[:8]))
|
225 |
+
|
226 |
+
generator = None
|
227 |
+
if seed != -1:
|
228 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
229 |
+
|
230 |
+
person_image = Image.open(person_image).convert("RGB")
|
231 |
+
cloth_image = Image.open(cloth_image).convert("RGB")
|
232 |
+
person_image = resize_and_crop(person_image, (args.width, args.height))
|
233 |
+
cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
|
234 |
+
|
235 |
+
# Process mask
|
236 |
+
if mask is not None:
|
237 |
+
mask = resize_and_crop(mask, (args.width, args.height))
|
238 |
+
else:
|
239 |
+
mask = automasker(
|
240 |
+
person_image,
|
241 |
+
cloth_type
|
242 |
+
)['mask']
|
243 |
+
mask = mask_processor.blur(mask, blur_factor=9)
|
244 |
+
|
245 |
+
# Inference
|
246 |
+
# try:
|
247 |
+
result_image = pipeline(
|
248 |
+
image=person_image,
|
249 |
+
condition_image=cloth_image,
|
250 |
+
mask=mask,
|
251 |
+
num_inference_steps=num_inference_steps,
|
252 |
+
guidance_scale=guidance_scale,
|
253 |
+
generator=generator
|
254 |
+
)[0]
|
255 |
+
# except Exception as e:
|
256 |
+
# raise gr.Error(
|
257 |
+
# "An error occurred. Please try again later: {}".format(e)
|
258 |
+
# )
|
259 |
+
|
260 |
+
# Post-process
|
261 |
+
masked_person = vis_mask(person_image, mask)
|
262 |
+
save_result_image = image_grid([person_image, masked_person, cloth_image, result_image], 1, 4)
|
263 |
+
save_result_image.save(result_save_path)
|
264 |
+
if show_type == "result only":
|
265 |
+
return result_image
|
266 |
+
else:
|
267 |
+
width, height = person_image.size
|
268 |
+
if show_type == "input & result":
|
269 |
+
condition_width = width // 2
|
270 |
+
conditions = image_grid([person_image, cloth_image], 2, 1)
|
271 |
+
else:
|
272 |
+
condition_width = width // 3
|
273 |
+
conditions = image_grid([person_image, masked_person , cloth_image], 3, 1)
|
274 |
+
conditions = conditions.resize((condition_width, height), Image.NEAREST)
|
275 |
+
new_result_image = Image.new("RGB", (width + condition_width + 5, height))
|
276 |
+
new_result_image.paste(conditions, (0, 0))
|
277 |
+
new_result_image.paste(result_image, (condition_width + 5, 0))
|
278 |
+
return new_result_image
|
279 |
+
|
280 |
+
@spaces.GPU(duration=120)
|
281 |
+
def submit_function_p2p(
|
282 |
+
person_image,
|
283 |
+
cloth_image,
|
284 |
+
num_inference_steps,
|
285 |
+
guidance_scale,
|
286 |
+
seed):
|
287 |
+
person_image= person_image["background"]
|
288 |
+
|
289 |
+
tmp_folder = args.output_dir
|
290 |
+
date_str = datetime.now().strftime("%Y%m%d%H%M%S")
|
291 |
+
result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png")
|
292 |
+
if not os.path.exists(os.path.join(tmp_folder, date_str[:8])):
|
293 |
+
os.makedirs(os.path.join(tmp_folder, date_str[:8]))
|
294 |
+
|
295 |
+
generator = None
|
296 |
+
if seed != -1:
|
297 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
298 |
+
|
299 |
+
person_image = Image.open(person_image).convert("RGB")
|
300 |
+
cloth_image = Image.open(cloth_image).convert("RGB")
|
301 |
+
person_image = resize_and_crop(person_image, (args.width, args.height))
|
302 |
+
cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
|
303 |
+
|
304 |
+
# Inference
|
305 |
+
try:
|
306 |
+
result_image = pipeline_p2p(
|
307 |
+
image=person_image,
|
308 |
+
condition_image=cloth_image,
|
309 |
+
num_inference_steps=num_inference_steps,
|
310 |
+
guidance_scale=guidance_scale,
|
311 |
+
generator=generator
|
312 |
+
)[0]
|
313 |
+
except Exception as e:
|
314 |
+
raise gr.Error(
|
315 |
+
"An error occurred. Please try again later: {}".format(e)
|
316 |
+
)
|
317 |
+
|
318 |
+
# Post-process
|
319 |
+
save_result_image = image_grid([person_image, cloth_image, result_image], 1, 3)
|
320 |
+
save_result_image.save(result_save_path)
|
321 |
+
return result_image
|
322 |
+
|
323 |
+
@spaces.GPU(duration=120)
|
324 |
+
def submit_function_flux(
|
325 |
+
person_image,
|
326 |
+
cloth_image,
|
327 |
+
cloth_type,
|
328 |
+
num_inference_steps,
|
329 |
+
guidance_scale,
|
330 |
+
seed,
|
331 |
+
show_type
|
332 |
+
):
|
333 |
+
|
334 |
+
# Process image editor input
|
335 |
+
person_image, mask = person_image["background"], person_image["layers"][0]
|
336 |
+
mask = Image.open(mask).convert("L")
|
337 |
+
if len(np.unique(np.array(mask))) == 1:
|
338 |
+
mask = None
|
339 |
+
else:
|
340 |
+
mask = np.array(mask)
|
341 |
+
mask[mask > 0] = 255
|
342 |
+
mask = Image.fromarray(mask)
|
343 |
+
|
344 |
+
# Set random seed
|
345 |
+
generator = None
|
346 |
+
if seed != -1:
|
347 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
348 |
+
|
349 |
+
# Process input images
|
350 |
+
person_image = Image.open(person_image).convert("RGB")
|
351 |
+
cloth_image = Image.open(cloth_image).convert("RGB")
|
352 |
+
|
353 |
+
# Adjust image sizes
|
354 |
+
person_image = resize_and_crop(person_image, (args.width, args.height))
|
355 |
+
cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
|
356 |
+
|
357 |
+
# Process mask
|
358 |
+
if mask is not None:
|
359 |
+
mask = resize_and_crop(mask, (args.width, args.height))
|
360 |
+
else:
|
361 |
+
mask = automasker(
|
362 |
+
person_image,
|
363 |
+
cloth_type
|
364 |
+
)['mask']
|
365 |
+
mask = mask_processor.blur(mask, blur_factor=9)
|
366 |
+
|
367 |
+
# Inference
|
368 |
+
result_image = pipeline_flux(
|
369 |
+
image=person_image,
|
370 |
+
condition_image=cloth_image,
|
371 |
+
mask_image=mask,
|
372 |
+
width=args.width,
|
373 |
+
height=args.height,
|
374 |
+
num_inference_steps=num_inference_steps,
|
375 |
+
guidance_scale=guidance_scale,
|
376 |
+
generator=generator
|
377 |
+
).images[0]
|
378 |
+
|
379 |
+
# Post-processing
|
380 |
+
masked_person = vis_mask(person_image, mask)
|
381 |
+
|
382 |
+
# Return result based on show type
|
383 |
+
if show_type == "result only":
|
384 |
+
return result_image
|
385 |
+
else:
|
386 |
+
width, height = person_image.size
|
387 |
+
if show_type == "input & result":
|
388 |
+
condition_width = width // 2
|
389 |
+
conditions = image_grid([person_image, cloth_image], 2, 1)
|
390 |
+
else:
|
391 |
+
condition_width = width // 3
|
392 |
+
conditions = image_grid([person_image, masked_person, cloth_image], 3, 1)
|
393 |
+
|
394 |
+
conditions = conditions.resize((condition_width, height), Image.NEAREST)
|
395 |
+
new_result_image = Image.new("RGB", (width + condition_width + 5, height))
|
396 |
+
new_result_image.paste(conditions, (0, 0))
|
397 |
+
new_result_image.paste(result_image, (condition_width + 5, 0))
|
398 |
+
return new_result_image
|
399 |
+
|
400 |
+
|
401 |
def person_example_fn(image_path):
|
402 |
return image_path
|
403 |
|
404 |
+
HEADER = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
|
406 |
def app_gradio():
|
407 |
with gr.Blocks(title="CatVTON") as demo:
|