Update app.py
Browse files
app.py
CHANGED
@@ -17,12 +17,21 @@ from model.pipeline import CatVTONPipeline, CatVTONPix2PixPipeline
|
|
17 |
from model.flux.pipeline_flux_tryon import FluxTryOnPipeline
|
18 |
from utils import init_weight_dtype, resize_and_crop, resize_and_padding
|
19 |
|
|
|
20 |
def parse_args():
|
21 |
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
22 |
parser.add_argument(
|
23 |
"--base_model_path",
|
24 |
type=str,
|
25 |
-
default="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
help=(
|
27 |
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
|
28 |
),
|
@@ -105,7 +114,10 @@ def image_grid(imgs, rows, cols):
|
|
105 |
|
106 |
|
107 |
args = parse_args()
|
108 |
-
|
|
|
|
|
|
|
109 |
# Pipeline
|
110 |
pipeline = CatVTONPipeline(
|
111 |
base_ckpt=args.base_model_path,
|
@@ -123,98 +135,6 @@ automasker = AutoMasker(
|
|
123 |
device='cuda',
|
124 |
)
|
125 |
|
126 |
-
def submit_function(
|
127 |
-
person_image,
|
128 |
-
cloth_image,
|
129 |
-
cloth_type,
|
130 |
-
num_inference_steps,
|
131 |
-
guidance_scale,
|
132 |
-
seed,
|
133 |
-
show_type
|
134 |
-
):
|
135 |
-
person_image, mask = person_image["background"], person_image["layers"][0]
|
136 |
-
#mask = Image.open(mask).convert("L")
|
137 |
-
|
138 |
-
if len(person_image["layers"]) > 0:
|
139 |
-
mask = Image.open(person_image["layers"][0]).convert("L")
|
140 |
-
else:
|
141 |
-
raise ValueError("No layers found in person image.")
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
if len(np.unique(np.array(mask))) == 1:
|
146 |
-
mask = None
|
147 |
-
else:
|
148 |
-
mask = np.array(mask)
|
149 |
-
mask[mask > 0] = 255
|
150 |
-
mask = Image.fromarray(mask)
|
151 |
-
|
152 |
-
tmp_folder = args.output_dir
|
153 |
-
date_str = datetime.now().strftime("%Y%m%d%H%M%S")
|
154 |
-
result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png")
|
155 |
-
if not os.path.exists(os.path.join(tmp_folder, date_str[:8])):
|
156 |
-
os.makedirs(os.path.join(tmp_folder, date_str[:8]))
|
157 |
-
|
158 |
-
generator = None
|
159 |
-
if seed != -1:
|
160 |
-
generator = torch.Generator(device='cuda').manual_seed(seed)
|
161 |
-
|
162 |
-
#person_image = Image.open(person_image).convert("RGB")
|
163 |
-
if person_image.get("background"):
|
164 |
-
person_image = Image.open(person_image["background"]).convert("RGB")
|
165 |
-
else:
|
166 |
-
raise ValueError("Background image not found.")
|
167 |
-
|
168 |
-
|
169 |
-
cloth_image = Image.open(cloth_image).convert("RGB")
|
170 |
-
person_image = resize_and_crop(person_image, (args.width, args.height))
|
171 |
-
cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
|
172 |
-
|
173 |
-
# Process mask
|
174 |
-
if mask is not None:
|
175 |
-
mask = resize_and_crop(mask, (args.width, args.height))
|
176 |
-
else:
|
177 |
-
mask = automasker(
|
178 |
-
person_image,
|
179 |
-
cloth_type
|
180 |
-
)['mask']
|
181 |
-
mask = mask_processor.blur(mask, blur_factor=9)
|
182 |
-
|
183 |
-
# Inference
|
184 |
-
# try:
|
185 |
-
result_image = pipeline(
|
186 |
-
image=person_image,
|
187 |
-
condition_image=cloth_image,
|
188 |
-
mask=mask,
|
189 |
-
num_inference_steps=num_inference_steps,
|
190 |
-
guidance_scale=guidance_scale,
|
191 |
-
generator=generator
|
192 |
-
)[0]
|
193 |
-
except Exception as e:
|
194 |
-
raise gr.Error(
|
195 |
-
"An error occurred. Please try again later: {}".format(e)
|
196 |
-
)
|
197 |
-
|
198 |
-
# Post-process
|
199 |
-
masked_person = vis_mask(person_image, mask)
|
200 |
-
save_result_image = image_grid([person_image, masked_person, cloth_image, result_image], 1, 4)
|
201 |
-
save_result_image.save(result_save_path)
|
202 |
-
if show_type == "result only":
|
203 |
-
return result_image
|
204 |
-
else:
|
205 |
-
width, height = person_image.size
|
206 |
-
if show_type == "input & result":
|
207 |
-
condition_width = width // 2
|
208 |
-
conditions = image_grid([person_image, cloth_image], 2, 1)
|
209 |
-
else:
|
210 |
-
condition_width = width // 3
|
211 |
-
conditions = image_grid([person_image, masked_person , cloth_image], 3, 1)
|
212 |
-
conditions = conditions.resize((condition_width, height), Image.NEAREST)
|
213 |
-
new_result_image = Image.new("RGB", (width + condition_width + 5, height))
|
214 |
-
new_result_image.paste(conditions, (0, 0))
|
215 |
-
new_result_image.paste(result_image, (condition_width + 5, 0))
|
216 |
-
return new_result_image
|
217 |
-
|
218 |
|
219 |
@spaces.GPU(duration=120)
|
220 |
def submit_function(
|
@@ -419,143 +339,146 @@ def submit_function_flux(
|
|
419 |
def person_example_fn(image_path):
|
420 |
return image_path
|
421 |
|
|
|
422 |
HEADER = ""
|
423 |
|
424 |
def app_gradio():
|
425 |
with gr.Blocks(title="CatVTON") as demo:
|
426 |
gr.Markdown(HEADER)
|
427 |
-
with gr.
|
428 |
-
with gr.
|
429 |
-
with gr.
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
person_image = gr.ImageEditor(
|
436 |
-
interactive=True, label="Person Image", type="filepath"
|
437 |
-
)
|
438 |
-
|
439 |
-
with gr.Row():
|
440 |
-
with gr.Column(scale=1, min_width=230):
|
441 |
-
cloth_image = gr.Image(
|
442 |
-
interactive=True, label="Condition Image", type="filepath"
|
443 |
-
)
|
444 |
-
with gr.Column(scale=1, min_width=120):
|
445 |
-
gr.Markdown(
|
446 |
-
'<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>'
|
447 |
)
|
448 |
-
|
449 |
-
label="
|
450 |
-
choices=["upper", "lower", "overall"],
|
451 |
-
value="upper",
|
452 |
)
|
453 |
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
|
|
|
|
|
|
470 |
)
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
)
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
value="input & mask & result",
|
479 |
-
)
|
480 |
-
|
481 |
-
with gr.Column(scale=2, min_width=500):
|
482 |
-
result_image = gr.Image(interactive=False, label="Result")
|
483 |
-
with gr.Row():
|
484 |
-
# Photo Examples
|
485 |
-
root_path = "resource/demo/example"
|
486 |
-
with gr.Column():
|
487 |
-
men_exm = gr.Examples(
|
488 |
-
examples=[
|
489 |
-
os.path.join(root_path, "person", "men", _)
|
490 |
-
for _ in os.listdir(os.path.join(root_path, "person", "men"))
|
491 |
-
],
|
492 |
-
examples_per_page=4,
|
493 |
-
inputs=image_path,
|
494 |
-
label="Person Examples ①",
|
495 |
-
)
|
496 |
-
women_exm = gr.Examples(
|
497 |
-
examples=[
|
498 |
-
os.path.join(root_path, "person", "women", _)
|
499 |
-
for _ in os.listdir(os.path.join(root_path, "person", "women"))
|
500 |
-
],
|
501 |
-
examples_per_page=4,
|
502 |
-
inputs=image_path,
|
503 |
-
label="Person Examples ②",
|
504 |
)
|
505 |
-
|
506 |
-
|
|
|
507 |
)
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
os.path.join(root_path, "condition", "upper", _)
|
512 |
-
for _ in os.listdir(os.path.join(root_path, "condition", "upper"))
|
513 |
-
],
|
514 |
-
examples_per_page=4,
|
515 |
-
inputs=cloth_image,
|
516 |
-
label="Condition Upper Examples",
|
517 |
)
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
],
|
523 |
-
examples_per_page=4,
|
524 |
-
inputs=cloth_image,
|
525 |
-
label="Condition Overall Examples",
|
526 |
-
)
|
527 |
-
condition_person_exm = gr.Examples(
|
528 |
-
examples=[
|
529 |
-
os.path.join(root_path, "condition", "person", _)
|
530 |
-
for _ in os.listdir(os.path.join(root_path, "condition", "person"))
|
531 |
-
],
|
532 |
-
examples_per_page=4,
|
533 |
-
inputs=cloth_image,
|
534 |
-
label="Condition Reference Person Examples",
|
535 |
-
)
|
536 |
-
gr.Markdown(
|
537 |
-
'<span style="color: #808080; font-size: small;">*Condition examples come from the Internet. </span>'
|
538 |
)
|
539 |
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
557 |
demo.queue().launch(share=True, show_error=True)
|
558 |
|
559 |
|
560 |
if __name__ == "__main__":
|
561 |
-
app_gradio()
|
|
|
17 |
from model.flux.pipeline_flux_tryon import FluxTryOnPipeline
|
18 |
from utils import init_weight_dtype, resize_and_crop, resize_and_padding
|
19 |
|
20 |
+
|
21 |
def parse_args():
|
22 |
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
23 |
parser.add_argument(
|
24 |
"--base_model_path",
|
25 |
type=str,
|
26 |
+
default="booksforcharlie/stable-diffusion-inpainting",
|
27 |
+
help=(
|
28 |
+
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
|
29 |
+
),
|
30 |
+
)
|
31 |
+
parser.add_argument(
|
32 |
+
"--p2p_base_model_path",
|
33 |
+
type=str,
|
34 |
+
default="timbrooks/instruct-pix2pix",
|
35 |
help=(
|
36 |
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
|
37 |
),
|
|
|
114 |
|
115 |
|
116 |
args = parse_args()
|
117 |
+
|
118 |
+
# Mask-based CatVTON
|
119 |
+
catvton_repo = "zhengchong/CatVTON"
|
120 |
+
repo_path = snapshot_download(repo_id=catvton_repo)
|
121 |
# Pipeline
|
122 |
pipeline = CatVTONPipeline(
|
123 |
base_ckpt=args.base_model_path,
|
|
|
135 |
device='cuda',
|
136 |
)
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
@spaces.GPU(duration=120)
|
140 |
def submit_function(
|
|
|
339 |
def person_example_fn(image_path):
|
340 |
return image_path
|
341 |
|
342 |
+
|
343 |
HEADER = ""
|
344 |
|
345 |
def app_gradio():
|
346 |
with gr.Blocks(title="CatVTON") as demo:
|
347 |
gr.Markdown(HEADER)
|
348 |
+
with gr.Tab("Mask-based & SD1.5"):
|
349 |
+
with gr.Row():
|
350 |
+
with gr.Column(scale=1, min_width=350):
|
351 |
+
with gr.Row():
|
352 |
+
image_path = gr.Image(
|
353 |
+
type="filepath",
|
354 |
+
interactive=True,
|
355 |
+
visible=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
)
|
357 |
+
person_image = gr.ImageEditor(
|
358 |
+
interactive=True, label="Person Image", type="filepath"
|
|
|
|
|
359 |
)
|
360 |
|
361 |
+
with gr.Row():
|
362 |
+
with gr.Column(scale=1, min_width=230):
|
363 |
+
cloth_image = gr.Image(
|
364 |
+
interactive=True, label="Condition Image", type="filepath"
|
365 |
+
)
|
366 |
+
with gr.Column(scale=1, min_width=120):
|
367 |
+
gr.Markdown(
|
368 |
+
'<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>'
|
369 |
+
)
|
370 |
+
cloth_type = gr.Radio(
|
371 |
+
label="Try-On Cloth Type",
|
372 |
+
choices=["upper", "lower", "overall"],
|
373 |
+
value="upper",
|
374 |
+
)
|
375 |
+
|
376 |
+
|
377 |
+
submit = gr.Button("Submit")
|
378 |
+
gr.Markdown(
|
379 |
+
'<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>'
|
380 |
)
|
381 |
+
|
382 |
+
gr.Markdown(
|
383 |
+
'<span style="color: #808080; font-size: small;">Advanced options can adjust details:<br>1. `Inference Step` may enhance details;<br>2. `CFG` is highly correlated with saturation;<br>3. `Random seed` may improve pseudo-shadow.</span>'
|
384 |
)
|
385 |
+
with gr.Accordion("Advanced Options", open=False):
|
386 |
+
num_inference_steps = gr.Slider(
|
387 |
+
label="Inference Step", minimum=10, maximum=100, step=5, value=50
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
388 |
)
|
389 |
+
# Guidence Scale
|
390 |
+
guidance_scale = gr.Slider(
|
391 |
+
label="CFG Strenth", minimum=0.0, maximum=7.5, step=0.5, value=2.5
|
392 |
)
|
393 |
+
# Random Seed
|
394 |
+
seed = gr.Slider(
|
395 |
+
label="Seed", minimum=-1, maximum=10000, step=1, value=42
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
)
|
397 |
+
show_type = gr.Radio(
|
398 |
+
label="Show Type",
|
399 |
+
choices=["result only", "input & result", "input & mask & result"],
|
400 |
+
value="input & mask & result",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
401 |
)
|
402 |
|
403 |
+
with gr.Column(scale=2, min_width=500):
|
404 |
+
result_image = gr.Image(interactive=False, label="Result")
|
405 |
+
with gr.Row():
|
406 |
+
# Photo Examples
|
407 |
+
root_path = "resource/demo/example"
|
408 |
+
with gr.Column():
|
409 |
+
men_exm = gr.Examples(
|
410 |
+
examples=[
|
411 |
+
os.path.join(root_path, "person", "men", _)
|
412 |
+
for _ in os.listdir(os.path.join(root_path, "person", "men"))
|
413 |
+
],
|
414 |
+
examples_per_page=4,
|
415 |
+
inputs=image_path,
|
416 |
+
label="Person Examples ①",
|
417 |
+
)
|
418 |
+
women_exm = gr.Examples(
|
419 |
+
examples=[
|
420 |
+
os.path.join(root_path, "person", "women", _)
|
421 |
+
for _ in os.listdir(os.path.join(root_path, "person", "women"))
|
422 |
+
],
|
423 |
+
examples_per_page=4,
|
424 |
+
inputs=image_path,
|
425 |
+
label="Person Examples ②",
|
426 |
+
)
|
427 |
+
gr.Markdown(
|
428 |
+
'<span style="color: #808080; font-size: small;">*Person examples come from the demos of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a>. </span>'
|
429 |
+
)
|
430 |
+
with gr.Column():
|
431 |
+
condition_upper_exm = gr.Examples(
|
432 |
+
examples=[
|
433 |
+
os.path.join(root_path, "condition", "upper", _)
|
434 |
+
for _ in os.listdir(os.path.join(root_path, "condition", "upper"))
|
435 |
+
],
|
436 |
+
examples_per_page=4,
|
437 |
+
inputs=cloth_image,
|
438 |
+
label="Condition Upper Examples",
|
439 |
+
)
|
440 |
+
condition_overall_exm = gr.Examples(
|
441 |
+
examples=[
|
442 |
+
os.path.join(root_path, "condition", "overall", _)
|
443 |
+
for _ in os.listdir(os.path.join(root_path, "condition", "overall"))
|
444 |
+
],
|
445 |
+
examples_per_page=4,
|
446 |
+
inputs=cloth_image,
|
447 |
+
label="Condition Overall Examples",
|
448 |
+
)
|
449 |
+
condition_person_exm = gr.Examples(
|
450 |
+
examples=[
|
451 |
+
os.path.join(root_path, "condition", "person", _)
|
452 |
+
for _ in os.listdir(os.path.join(root_path, "condition", "person"))
|
453 |
+
],
|
454 |
+
examples_per_page=4,
|
455 |
+
inputs=cloth_image,
|
456 |
+
label="Condition Reference Person Examples",
|
457 |
+
)
|
458 |
+
gr.Markdown(
|
459 |
+
'<span style="color: #808080; font-size: small;">*Condition examples come from the Internet. </span>'
|
460 |
+
)
|
461 |
+
|
462 |
+
image_path.change(
|
463 |
+
person_example_fn, inputs=image_path, outputs=person_image
|
464 |
+
)
|
465 |
+
|
466 |
+
submit.click(
|
467 |
+
submit_function,
|
468 |
+
[
|
469 |
+
person_image,
|
470 |
+
cloth_image,
|
471 |
+
cloth_type,
|
472 |
+
num_inference_steps,
|
473 |
+
guidance_scale,
|
474 |
+
seed,
|
475 |
+
show_type,
|
476 |
+
],
|
477 |
+
result_image,
|
478 |
+
)
|
479 |
+
|
480 |
demo.queue().launch(share=True, show_error=True)
|
481 |
|
482 |
|
483 |
if __name__ == "__main__":
|
484 |
+
app_gradio()
|