|
from typing import Any, Dict, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from diffusers.models.modeling_utils import ModelMixin
|
|
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
|
|
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
|
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
|
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
|
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
|
from diffusers.models.attention import FeedForward
|
|
from diffusers.models.attention_processor import (
|
|
Attention,
|
|
AttentionProcessor,
|
|
FusedFluxAttnProcessor2_0,
|
|
)
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
class FluxAttnProcessor2_0:
|
|
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
|
|
|
def __init__(self):
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
|
|
|
def __call__(
|
|
self,
|
|
attn: Attention,
|
|
hidden_states: torch.FloatTensor,
|
|
encoder_hidden_states: torch.FloatTensor = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
image_rotary_emb: Optional[torch.Tensor] = None,
|
|
) -> torch.FloatTensor:
|
|
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
|
|
|
|
|
query = attn.to_q(hidden_states)
|
|
key = attn.to_k(hidden_states)
|
|
value = attn.to_v(hidden_states)
|
|
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
if attn.norm_q is not None:
|
|
query = attn.norm_q(query)
|
|
if attn.norm_k is not None:
|
|
key = attn.norm_k(key)
|
|
|
|
|
|
if encoder_hidden_states is not None:
|
|
|
|
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
|
|
|
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
|
batch_size, -1, attn.heads, head_dim
|
|
).transpose(1, 2)
|
|
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
|
batch_size, -1, attn.heads, head_dim
|
|
).transpose(1, 2)
|
|
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
|
batch_size, -1, attn.heads, head_dim
|
|
).transpose(1, 2)
|
|
|
|
if attn.norm_added_q is not None:
|
|
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
|
if attn.norm_added_k is not None:
|
|
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
|
|
|
|
|
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
|
|
|
if image_rotary_emb is not None:
|
|
from diffusers.models.embeddings import apply_rotary_emb
|
|
|
|
query = apply_rotary_emb(query, image_rotary_emb)
|
|
key = apply_rotary_emb(key, image_rotary_emb)
|
|
|
|
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
hidden_states = hidden_states.to(query.dtype)
|
|
|
|
if encoder_hidden_states is not None:
|
|
encoder_hidden_states, hidden_states = (
|
|
hidden_states[:, : encoder_hidden_states.shape[1]],
|
|
hidden_states[:, encoder_hidden_states.shape[1] :],
|
|
)
|
|
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
|
|
|
|
|
if not attn.pre_only:
|
|
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
|
if encoder_hidden_states is not None:
|
|
return hidden_states, encoder_hidden_states
|
|
else:
|
|
return hidden_states
|
|
|
|
|
|
@maybe_allow_in_graph
|
|
class FluxSingleTransformerBlock(nn.Module):
|
|
r"""
|
|
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
|
|
|
Reference: https://arxiv.org/abs/2403.03206
|
|
|
|
Parameters:
|
|
dim (`int`): The number of channels in the input and output.
|
|
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
|
attention_head_dim (`int`): The number of channels in each head.
|
|
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
|
processing of `context` conditions.
|
|
"""
|
|
|
|
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
|
|
super().__init__()
|
|
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
|
|
|
self.norm = AdaLayerNormZeroSingle(dim)
|
|
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
|
self.act_mlp = nn.GELU(approximate="tanh")
|
|
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
|
|
|
processor = FluxAttnProcessor2_0()
|
|
self.attn = Attention(
|
|
query_dim=dim,
|
|
cross_attention_dim=None,
|
|
dim_head=attention_head_dim,
|
|
heads=num_attention_heads,
|
|
out_dim=dim,
|
|
bias=True,
|
|
processor=processor,
|
|
qk_norm="rms_norm",
|
|
eps=1e-6,
|
|
pre_only=True,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
temb: torch.FloatTensor,
|
|
image_rotary_emb=None,
|
|
joint_attention_kwargs=None,
|
|
):
|
|
residual = hidden_states
|
|
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
|
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
|
joint_attention_kwargs = joint_attention_kwargs or {}
|
|
attn_output = self.attn(
|
|
hidden_states=norm_hidden_states,
|
|
image_rotary_emb=image_rotary_emb,
|
|
**joint_attention_kwargs,
|
|
)
|
|
|
|
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
|
gate = gate.unsqueeze(1)
|
|
hidden_states = gate * self.proj_out(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
if hidden_states.dtype == torch.float16:
|
|
hidden_states = hidden_states.clip(-65504, 65504)
|
|
|
|
return hidden_states
|
|
|
|
|
|
@maybe_allow_in_graph
|
|
class FluxTransformerBlock(nn.Module):
|
|
r"""
|
|
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
|
|
|
Reference: https://arxiv.org/abs/2403.03206
|
|
|
|
Parameters:
|
|
dim (`int`): The number of channels in the input and output.
|
|
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
|
attention_head_dim (`int`): The number of channels in each head.
|
|
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
|
processing of `context` conditions.
|
|
"""
|
|
|
|
def __init__(self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6):
|
|
super().__init__()
|
|
|
|
self.norm1 = AdaLayerNormZero(dim)
|
|
|
|
self.norm1_context = AdaLayerNormZero(dim)
|
|
|
|
if hasattr(F, "scaled_dot_product_attention"):
|
|
processor = FluxAttnProcessor2_0()
|
|
else:
|
|
raise ValueError(
|
|
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
|
)
|
|
self.attn = Attention(
|
|
query_dim=dim,
|
|
cross_attention_dim=None,
|
|
added_kv_proj_dim=dim,
|
|
dim_head=attention_head_dim,
|
|
heads=num_attention_heads,
|
|
out_dim=dim,
|
|
context_pre_only=False,
|
|
bias=True,
|
|
processor=processor,
|
|
qk_norm=qk_norm,
|
|
eps=eps,
|
|
)
|
|
|
|
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
|
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
|
|
|
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
|
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
|
|
|
|
|
self._chunk_size = None
|
|
self._chunk_dim = 0
|
|
|
|
def remove_text_layers(self):
|
|
|
|
self.norm1_context = None
|
|
self.ff_context = None
|
|
self.norm2_context = None
|
|
self.attn.to_added_qkv = None
|
|
self.attn.norm_added_q = None
|
|
self.attn.norm_added_k = None
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
encoder_hidden_states: torch.FloatTensor,
|
|
temb: torch.FloatTensor,
|
|
image_rotary_emb=None,
|
|
joint_attention_kwargs=None,
|
|
):
|
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
|
|
|
if encoder_hidden_states is not None:
|
|
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
|
encoder_hidden_states, emb=temb
|
|
)
|
|
else:
|
|
norm_encoder_hidden_states = None
|
|
|
|
joint_attention_kwargs = joint_attention_kwargs or {}
|
|
|
|
|
|
outputs = self.attn(
|
|
hidden_states=norm_hidden_states,
|
|
encoder_hidden_states=norm_encoder_hidden_states,
|
|
image_rotary_emb=image_rotary_emb,
|
|
**joint_attention_kwargs,
|
|
)
|
|
if isinstance(outputs, tuple):
|
|
attn_output, context_attn_output = outputs
|
|
else:
|
|
attn_output = outputs
|
|
|
|
|
|
attn_output = gate_msa.unsqueeze(1) * attn_output
|
|
hidden_states = hidden_states + attn_output
|
|
|
|
norm_hidden_states = self.norm2(hidden_states)
|
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
|
|
|
ff_output = self.ff(norm_hidden_states)
|
|
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
|
|
|
hidden_states = hidden_states + ff_output
|
|
|
|
|
|
if encoder_hidden_states is not None:
|
|
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
|
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
|
|
|
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
|
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
|
|
|
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
|
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
|
if encoder_hidden_states.dtype == torch.float16:
|
|
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
|
|
|
return encoder_hidden_states, hidden_states
|
|
|
|
|
|
class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
|
"""
|
|
The Transformer model introduced in Flux.
|
|
|
|
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
|
|
|
Parameters:
|
|
patch_size (`int`): Patch size to turn the input data into small patches.
|
|
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
|
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
|
|
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
|
|
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
|
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
|
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
|
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
|
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
|
|
"""
|
|
|
|
_supports_gradient_checkpointing = True
|
|
_no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
patch_size: int = 1,
|
|
in_channels: int = 64,
|
|
out_channels: Optional[int] = None,
|
|
num_layers: int = 19,
|
|
num_single_layers: int = 38,
|
|
attention_head_dim: int = 128,
|
|
num_attention_heads: int = 24,
|
|
joint_attention_dim: int = 4096,
|
|
pooled_projection_dim: int = 768,
|
|
guidance_embeds: bool = False,
|
|
axes_dims_rope: Tuple[int] = (16, 56, 56),
|
|
):
|
|
super().__init__()
|
|
self.out_channels = out_channels or in_channels
|
|
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
|
|
|
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
|
|
|
text_time_guidance_cls = (
|
|
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
|
|
)
|
|
self.time_text_embed = text_time_guidance_cls(
|
|
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
|
|
)
|
|
|
|
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim)
|
|
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
FluxTransformerBlock(
|
|
dim=self.inner_dim,
|
|
num_attention_heads=self.config.num_attention_heads,
|
|
attention_head_dim=self.config.attention_head_dim,
|
|
)
|
|
for i in range(self.config.num_layers)
|
|
]
|
|
)
|
|
|
|
self.single_transformer_blocks = nn.ModuleList(
|
|
[
|
|
FluxSingleTransformerBlock(
|
|
dim=self.inner_dim,
|
|
num_attention_heads=self.config.num_attention_heads,
|
|
attention_head_dim=self.config.attention_head_dim,
|
|
)
|
|
for i in range(self.config.num_single_layers)
|
|
]
|
|
)
|
|
|
|
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
|
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
@property
|
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
|
r"""
|
|
Returns:
|
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
|
indexed by its weight name.
|
|
"""
|
|
|
|
processors = {}
|
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
|
if hasattr(module, "get_processor"):
|
|
processors[f"{name}.processor"] = module.get_processor()
|
|
|
|
for sub_name, child in module.named_children():
|
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
|
|
|
return processors
|
|
|
|
for name, module in self.named_children():
|
|
fn_recursive_add_processors(name, module, processors)
|
|
|
|
return processors
|
|
|
|
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
|
r"""
|
|
Sets the attention processor to use to compute attention.
|
|
|
|
Parameters:
|
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
|
for **all** `Attention` layers.
|
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
|
processor. This is strongly recommended when setting trainable attention processors.
|
|
|
|
"""
|
|
count = len(self.attn_processors.keys())
|
|
|
|
if isinstance(processor, dict) and len(processor) != count:
|
|
raise ValueError(
|
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
|
)
|
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
|
if hasattr(module, "set_processor"):
|
|
if not isinstance(processor, dict):
|
|
module.set_processor(processor)
|
|
else:
|
|
module.set_processor(processor.pop(f"{name}.processor"))
|
|
|
|
for sub_name, child in module.named_children():
|
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
|
|
|
for name, module in self.named_children():
|
|
fn_recursive_attn_processor(name, module, processor)
|
|
|
|
|
|
def fuse_qkv_projections(self):
|
|
"""
|
|
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
|
are fused. For cross-attention modules, key and value projection matrices are fused.
|
|
|
|
<Tip warning={true}>
|
|
|
|
This API is 🧪 experimental.
|
|
|
|
</Tip>
|
|
"""
|
|
self.original_attn_processors = None
|
|
|
|
for _, attn_processor in self.attn_processors.items():
|
|
if "Added" in str(attn_processor.__class__.__name__):
|
|
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
|
|
|
self.original_attn_processors = self.attn_processors
|
|
|
|
for module in self.modules():
|
|
if isinstance(module, Attention):
|
|
module.fuse_projections(fuse=True)
|
|
|
|
self.set_attn_processor(FusedFluxAttnProcessor2_0())
|
|
|
|
|
|
def unfuse_qkv_projections(self):
|
|
"""Disables the fused QKV projection if enabled.
|
|
|
|
<Tip warning={true}>
|
|
|
|
This API is 🧪 experimental.
|
|
|
|
</Tip>
|
|
|
|
"""
|
|
if self.original_attn_processors is not None:
|
|
self.set_attn_processor(self.original_attn_processors)
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False):
|
|
if hasattr(module, "gradient_checkpointing"):
|
|
module.gradient_checkpointing = value
|
|
|
|
def remove_text_layers(self):
|
|
self.context_embedder = None
|
|
for transformer_block in self.transformer_blocks:
|
|
transformer_block.remove_text_layers()
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: torch.Tensor = None,
|
|
condition_hidden_states: torch.Tensor = None,
|
|
pooled_projections: torch.Tensor = None,
|
|
timestep: torch.LongTensor = None,
|
|
img_ids: torch.Tensor = None,
|
|
txt_ids: torch.Tensor = None,
|
|
guidance: torch.Tensor = None,
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
controlnet_block_samples=None,
|
|
controlnet_single_block_samples=None,
|
|
return_dict: bool = True,
|
|
controlnet_blocks_repeat: bool = False,
|
|
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
|
"""
|
|
The [`FluxTransformer2DModel`] forward method.
|
|
|
|
Args:
|
|
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
|
Input `hidden_states`.
|
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
|
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
|
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
|
from the embeddings of input conditions.
|
|
timestep ( `torch.LongTensor`):
|
|
Used to indicate denoising step.
|
|
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
|
A list of tensors that if specified are added to the residuals of transformer blocks.
|
|
joint_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
|
tuple.
|
|
|
|
Returns:
|
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
|
`tuple` where the first element is the sample tensor.
|
|
"""
|
|
if joint_attention_kwargs is not None:
|
|
joint_attention_kwargs = joint_attention_kwargs.copy()
|
|
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
|
else:
|
|
lora_scale = 1.0
|
|
|
|
if USE_PEFT_BACKEND:
|
|
|
|
scale_lora_layers(self, lora_scale)
|
|
else:
|
|
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
|
logger.warning(
|
|
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
|
)
|
|
|
|
hidden_states = self.x_embedder(hidden_states)
|
|
|
|
timestep = timestep.to(hidden_states.dtype) * 1000
|
|
guidance = guidance.to(hidden_states.dtype) * 1000 if guidance is not None else None
|
|
|
|
temb = self.time_text_embed(timestep, pooled_projections) if guidance is None else self.time_text_embed(timestep, guidance, pooled_projections)
|
|
|
|
if encoder_hidden_states is not None:
|
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=0) if txt_ids is not None else img_ids
|
|
image_rotary_emb = self.pos_embed(ids)
|
|
|
|
|
|
for index_block, block in enumerate(self.transformer_blocks):
|
|
if self.training and self.gradient_checkpointing:
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
else:
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
result = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(block),
|
|
hidden_states,
|
|
encoder_hidden_states,
|
|
temb,
|
|
image_rotary_emb,
|
|
**ckpt_kwargs,
|
|
)
|
|
if isinstance(result, tuple):
|
|
encoder_hidden_states, hidden_states = result
|
|
else:
|
|
hidden_states = result
|
|
|
|
else:
|
|
result = block(
|
|
hidden_states=hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
temb=temb,
|
|
image_rotary_emb=image_rotary_emb,
|
|
joint_attention_kwargs=joint_attention_kwargs,
|
|
)
|
|
if isinstance(result, tuple):
|
|
encoder_hidden_states, hidden_states = result
|
|
else:
|
|
hidden_states = result
|
|
|
|
|
|
if condition_hidden_states is not None and index_block == 0:
|
|
hidden_states = hidden_states + condition_hidden_states
|
|
|
|
|
|
if controlnet_block_samples is not None:
|
|
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
|
interval_control = int(np.ceil(interval_control))
|
|
|
|
if controlnet_blocks_repeat:
|
|
hidden_states = (
|
|
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
|
|
)
|
|
else:
|
|
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
|
|
|
if encoder_hidden_states is not None:
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
|
|
|
|
|
for index_block, block in enumerate(self.single_transformer_blocks):
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
else:
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(block),
|
|
hidden_states,
|
|
temb,
|
|
image_rotary_emb,
|
|
**ckpt_kwargs,
|
|
)
|
|
|
|
else:
|
|
hidden_states = block(
|
|
hidden_states=hidden_states,
|
|
temb=temb,
|
|
image_rotary_emb=image_rotary_emb,
|
|
joint_attention_kwargs=joint_attention_kwargs,
|
|
)
|
|
|
|
|
|
if controlnet_single_block_samples is not None:
|
|
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
|
interval_control = int(np.ceil(interval_control))
|
|
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
|
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
|
+ controlnet_single_block_samples[index_block // interval_control]
|
|
)
|
|
|
|
if encoder_hidden_states is not None:
|
|
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
|
|
|
hidden_states = self.norm_out(hidden_states, temb)
|
|
output = self.proj_out(hidden_states)
|
|
|
|
if USE_PEFT_BACKEND:
|
|
|
|
unscale_lora_layers(self, lora_scale)
|
|
|
|
if not return_dict:
|
|
return (output,)
|
|
|
|
return Transformer2DModelOutput(sample=output)
|
|
|