|
|
|
import colorsys
|
|
import logging
|
|
import math
|
|
import numpy as np
|
|
from enum import Enum, unique
|
|
import cv2
|
|
import matplotlib as mpl
|
|
import matplotlib.colors as mplc
|
|
import matplotlib.figure as mplfigure
|
|
import pycocotools.mask as mask_util
|
|
import torch
|
|
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
|
from PIL import Image
|
|
|
|
from detectron2.data import MetadataCatalog
|
|
from detectron2.structures import BitMasks, Boxes, BoxMode, Keypoints, PolygonMasks, RotatedBoxes
|
|
from detectron2.utils.file_io import PathManager
|
|
|
|
from .colormap import random_color
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
__all__ = ["ColorMode", "VisImage", "Visualizer"]
|
|
|
|
|
|
_SMALL_OBJECT_AREA_THRESH = 1000
|
|
_LARGE_MASK_AREA_THRESH = 120000
|
|
_OFF_WHITE = (1.0, 1.0, 240.0 / 255)
|
|
_BLACK = (0, 0, 0)
|
|
_RED = (1.0, 0, 0)
|
|
|
|
_KEYPOINT_THRESHOLD = 0.05
|
|
|
|
|
|
@unique
|
|
class ColorMode(Enum):
|
|
"""
|
|
Enum of different color modes to use for instance visualizations.
|
|
"""
|
|
|
|
IMAGE = 0
|
|
"""
|
|
Picks a random color for every instance and overlay segmentations with low opacity.
|
|
"""
|
|
SEGMENTATION = 1
|
|
"""
|
|
Let instances of the same category have similar colors
|
|
(from metadata.thing_colors), and overlay them with
|
|
high opacity. This provides more attention on the quality of segmentation.
|
|
"""
|
|
IMAGE_BW = 2
|
|
"""
|
|
Same as IMAGE, but convert all areas without masks to gray-scale.
|
|
Only available for drawing per-instance mask predictions.
|
|
"""
|
|
|
|
|
|
class GenericMask:
|
|
"""
|
|
Attribute:
|
|
polygons (list[ndarray]): list[ndarray]: polygons for this mask.
|
|
Each ndarray has format [x, y, x, y, ...]
|
|
mask (ndarray): a binary mask
|
|
"""
|
|
|
|
def __init__(self, mask_or_polygons, height, width):
|
|
self._mask = self._polygons = self._has_holes = None
|
|
self.height = height
|
|
self.width = width
|
|
|
|
m = mask_or_polygons
|
|
if isinstance(m, dict):
|
|
|
|
assert "counts" in m and "size" in m
|
|
if isinstance(m["counts"], list):
|
|
h, w = m["size"]
|
|
assert h == height and w == width
|
|
m = mask_util.frPyObjects(m, h, w)
|
|
self._mask = mask_util.decode(m)[:, :]
|
|
return
|
|
|
|
if isinstance(m, list):
|
|
self._polygons = [np.asarray(x).reshape(-1) for x in m]
|
|
return
|
|
|
|
if isinstance(m, np.ndarray):
|
|
assert m.shape[1] != 2, m.shape
|
|
assert m.shape == (
|
|
height,
|
|
width,
|
|
), f"mask shape: {m.shape}, target dims: {height}, {width}"
|
|
self._mask = m.astype("uint8")
|
|
return
|
|
|
|
raise ValueError("GenericMask cannot handle object {} of type '{}'".format(m, type(m)))
|
|
|
|
@property
|
|
def mask(self):
|
|
if self._mask is None:
|
|
self._mask = self.polygons_to_mask(self._polygons)
|
|
return self._mask
|
|
|
|
@property
|
|
def polygons(self):
|
|
if self._polygons is None:
|
|
self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
|
|
return self._polygons
|
|
|
|
@property
|
|
def has_holes(self):
|
|
if self._has_holes is None:
|
|
if self._mask is not None:
|
|
self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
|
|
else:
|
|
self._has_holes = False
|
|
return self._has_holes
|
|
|
|
def mask_to_polygons(self, mask):
|
|
|
|
|
|
|
|
|
|
mask = np.ascontiguousarray(mask)
|
|
res = cv2.findContours(mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
|
|
hierarchy = res[-1]
|
|
if hierarchy is None:
|
|
return [], False
|
|
has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0
|
|
res = res[-2]
|
|
res = [x.flatten() for x in res]
|
|
|
|
|
|
|
|
res = [x + 0.5 for x in res if len(x) >= 6]
|
|
return res, has_holes
|
|
|
|
def polygons_to_mask(self, polygons):
|
|
rle = mask_util.frPyObjects(polygons, self.height, self.width)
|
|
rle = mask_util.merge(rle)
|
|
return mask_util.decode(rle)[:, :]
|
|
|
|
def area(self):
|
|
return self.mask.sum()
|
|
|
|
def bbox(self):
|
|
p = mask_util.frPyObjects(self.polygons, self.height, self.width)
|
|
p = mask_util.merge(p)
|
|
bbox = mask_util.toBbox(p)
|
|
bbox[2] += bbox[0]
|
|
bbox[3] += bbox[1]
|
|
return bbox
|
|
|
|
|
|
class _PanopticPrediction:
|
|
"""
|
|
Unify different panoptic annotation/prediction formats
|
|
"""
|
|
|
|
def __init__(self, panoptic_seg, segments_info, metadata=None):
|
|
if segments_info is None:
|
|
assert metadata is not None
|
|
|
|
|
|
|
|
|
|
label_divisor = metadata.label_divisor
|
|
segments_info = []
|
|
for panoptic_label in np.unique(panoptic_seg.numpy()):
|
|
if panoptic_label == -1:
|
|
|
|
continue
|
|
pred_class = panoptic_label // label_divisor
|
|
isthing = pred_class in metadata.thing_dataset_id_to_contiguous_id.values()
|
|
segments_info.append(
|
|
{
|
|
"id": int(panoptic_label),
|
|
"category_id": int(pred_class),
|
|
"isthing": bool(isthing),
|
|
}
|
|
)
|
|
del metadata
|
|
|
|
self._seg = panoptic_seg
|
|
|
|
self._sinfo = {s["id"]: s for s in segments_info}
|
|
segment_ids, areas = torch.unique(panoptic_seg, sorted=True, return_counts=True)
|
|
areas = areas.numpy()
|
|
sorted_idxs = np.argsort(-areas)
|
|
self._seg_ids, self._seg_areas = segment_ids[sorted_idxs], areas[sorted_idxs]
|
|
self._seg_ids = self._seg_ids.tolist()
|
|
for sid, area in zip(self._seg_ids, self._seg_areas):
|
|
if sid in self._sinfo:
|
|
self._sinfo[sid]["area"] = float(area)
|
|
|
|
def non_empty_mask(self):
|
|
"""
|
|
Returns:
|
|
(H, W) array, a mask for all pixels that have a prediction
|
|
"""
|
|
empty_ids = []
|
|
for id in self._seg_ids:
|
|
if id not in self._sinfo:
|
|
empty_ids.append(id)
|
|
if len(empty_ids) == 0:
|
|
return np.zeros(self._seg.shape, dtype=np.uint8)
|
|
assert (
|
|
len(empty_ids) == 1
|
|
), ">1 ids corresponds to no labels. This is currently not supported"
|
|
return (self._seg != empty_ids[0]).numpy().astype(bool)
|
|
|
|
def semantic_masks(self):
|
|
for sid in self._seg_ids:
|
|
sinfo = self._sinfo.get(sid)
|
|
if sinfo is None or sinfo["isthing"]:
|
|
|
|
continue
|
|
yield (self._seg == sid).numpy().astype(bool), sinfo
|
|
|
|
def instance_masks(self):
|
|
for sid in self._seg_ids:
|
|
sinfo = self._sinfo.get(sid)
|
|
if sinfo is None or not sinfo["isthing"]:
|
|
continue
|
|
mask = (self._seg == sid).numpy().astype(bool)
|
|
if mask.sum() > 0:
|
|
yield mask, sinfo
|
|
|
|
|
|
def _create_text_labels(classes, scores, class_names, is_crowd=None):
|
|
"""
|
|
Args:
|
|
classes (list[int] or None):
|
|
scores (list[float] or None):
|
|
class_names (list[str] or None):
|
|
is_crowd (list[bool] or None):
|
|
|
|
Returns:
|
|
list[str] or None
|
|
"""
|
|
labels = None
|
|
if classes is not None:
|
|
if class_names is not None and len(class_names) > 0:
|
|
labels = [class_names[i] for i in classes]
|
|
else:
|
|
labels = [str(i) for i in classes]
|
|
if scores is not None:
|
|
if labels is None:
|
|
labels = ["{:.0f}%".format(s * 100) for s in scores]
|
|
else:
|
|
labels = ["{} {:.0f}%".format(l, s * 100) for l, s in zip(labels, scores)]
|
|
if labels is not None and is_crowd is not None:
|
|
labels = [l + ("|crowd" if crowd else "") for l, crowd in zip(labels, is_crowd)]
|
|
return labels
|
|
|
|
|
|
class VisImage:
|
|
def __init__(self, img, scale=1.0):
|
|
"""
|
|
Args:
|
|
img (ndarray): an RGB image of shape (H, W, 3) in range [0, 255].
|
|
scale (float): scale the input image
|
|
"""
|
|
self.img = img
|
|
self.scale = scale
|
|
self.width, self.height = img.shape[1], img.shape[0]
|
|
self._setup_figure(img)
|
|
|
|
def _setup_figure(self, img):
|
|
"""
|
|
Args:
|
|
Same as in :meth:`__init__()`.
|
|
|
|
Returns:
|
|
fig (matplotlib.pyplot.figure): top level container for all the image plot elements.
|
|
ax (matplotlib.pyplot.Axes): contains figure elements and sets the coordinate system.
|
|
"""
|
|
fig = mplfigure.Figure(frameon=False)
|
|
self.dpi = fig.get_dpi()
|
|
|
|
|
|
fig.set_size_inches(
|
|
(self.width * self.scale + 1e-2) / self.dpi,
|
|
(self.height * self.scale + 1e-2) / self.dpi,
|
|
)
|
|
self.canvas = FigureCanvasAgg(fig)
|
|
|
|
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
|
|
ax.axis("off")
|
|
self.fig = fig
|
|
self.ax = ax
|
|
self.reset_image(img)
|
|
|
|
def reset_image(self, img):
|
|
"""
|
|
Args:
|
|
img: same as in __init__
|
|
"""
|
|
img = img.astype("uint8")
|
|
self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest")
|
|
|
|
def save(self, filepath):
|
|
"""
|
|
Args:
|
|
filepath (str): a string that contains the absolute path, including the file name, where
|
|
the visualized image will be saved.
|
|
"""
|
|
self.fig.savefig(filepath)
|
|
|
|
def get_image(self):
|
|
"""
|
|
Returns:
|
|
ndarray:
|
|
the visualized image of shape (H, W, 3) (RGB) in uint8 type.
|
|
The shape is scaled w.r.t the input image using the given `scale` argument.
|
|
"""
|
|
canvas = self.canvas
|
|
s, (width, height) = canvas.print_to_buffer()
|
|
|
|
|
|
|
|
|
|
|
|
buffer = np.frombuffer(s, dtype="uint8")
|
|
|
|
img_rgba = buffer.reshape(height, width, 4)
|
|
rgb, alpha = np.split(img_rgba, [3], axis=2)
|
|
return rgb.astype("uint8")
|
|
|
|
|
|
class Visualizer:
|
|
"""
|
|
Visualizer that draws data about detection/segmentation on images.
|
|
|
|
It contains methods like `draw_{text,box,circle,line,binary_mask,polygon}`
|
|
that draw primitive objects to images, as well as high-level wrappers like
|
|
`draw_{instance_predictions,sem_seg,panoptic_seg_predictions,dataset_dict}`
|
|
that draw composite data in some pre-defined style.
|
|
|
|
Note that the exact visualization style for the high-level wrappers are subject to change.
|
|
Style such as color, opacity, label contents, visibility of labels, or even the visibility
|
|
of objects themselves (e.g. when the object is too small) may change according
|
|
to different heuristics, as long as the results still look visually reasonable.
|
|
|
|
To obtain a consistent style, you can implement custom drawing functions with the
|
|
abovementioned primitive methods instead. If you need more customized visualization
|
|
styles, you can process the data yourself following their format documented in
|
|
tutorials (:doc:`/tutorials/models`, :doc:`/tutorials/datasets`). This class does not
|
|
intend to satisfy everyone's preference on drawing styles.
|
|
|
|
This visualizer focuses on high rendering quality rather than performance. It is not
|
|
designed to be used for real-time applications.
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
self, img_rgb, metadata=None, scale=1.0, instance_mode=ColorMode.IMAGE, font_size_scale=1.0
|
|
):
|
|
"""
|
|
Args:
|
|
img_rgb: a numpy array of shape (H, W, C), where H and W correspond to
|
|
the height and width of the image respectively. C is the number of
|
|
color channels. The image is required to be in RGB format since that
|
|
is a requirement of the Matplotlib library. The image is also expected
|
|
to be in the range [0, 255].
|
|
metadata (Metadata): dataset metadata (e.g. class names and colors)
|
|
instance_mode (ColorMode): defines one of the pre-defined style for drawing
|
|
instances on an image.
|
|
font_size_scale: extra scaling of font size on top of default font size
|
|
"""
|
|
self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
|
|
if metadata is None:
|
|
metadata = MetadataCatalog.get("__nonexist__")
|
|
self.metadata = metadata
|
|
self.output = VisImage(self.img, scale=scale)
|
|
self.cpu_device = torch.device("cpu")
|
|
|
|
|
|
self._default_font_size = (
|
|
max(np.sqrt(self.output.height * self.output.width) // 90, 10 // scale)
|
|
* font_size_scale
|
|
)
|
|
self._instance_mode = instance_mode
|
|
self.keypoint_threshold = _KEYPOINT_THRESHOLD
|
|
|
|
def draw_instance_predictions(self, predictions, jittering: bool = True):
|
|
"""
|
|
Draw instance-level prediction results on an image.
|
|
|
|
Args:
|
|
predictions (Instances): the output of an instance detection/segmentation
|
|
model. Following fields will be used to draw:
|
|
"pred_boxes", "pred_classes", "scores", "pred_masks" (or "pred_masks_rle").
|
|
jittering: if True, in color mode SEGMENTATION, randomly jitter the colors per class
|
|
to distinguish instances from the same class
|
|
|
|
Returns:
|
|
output (VisImage): image object with visualizations.
|
|
"""
|
|
boxes = predictions.pred_boxes if predictions.has("pred_boxes") else None
|
|
scores = predictions.scores if predictions.has("scores") else None
|
|
classes = predictions.pred_classes.tolist() if predictions.has("pred_classes") else None
|
|
labels = _create_text_labels(classes, scores, self.metadata.get("thing_classes", None))
|
|
keypoints = predictions.pred_keypoints if predictions.has("pred_keypoints") else None
|
|
|
|
if predictions.has("pred_masks"):
|
|
masks = np.asarray(predictions.pred_masks)
|
|
masks = [GenericMask(x, self.output.height, self.output.width) for x in masks]
|
|
else:
|
|
masks = None
|
|
|
|
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"):
|
|
colors = (
|
|
[self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in classes]
|
|
if jittering
|
|
else [
|
|
tuple(mplc.to_rgb([x / 255 for x in self.metadata.thing_colors[c]]))
|
|
for c in classes
|
|
]
|
|
)
|
|
|
|
alpha = 0.8
|
|
else:
|
|
colors = None
|
|
alpha = 0.5
|
|
|
|
if self._instance_mode == ColorMode.IMAGE_BW:
|
|
self.output.reset_image(
|
|
self._create_grayscale_image(
|
|
(predictions.pred_masks.any(dim=0) > 0).numpy()
|
|
if predictions.has("pred_masks")
|
|
else None
|
|
)
|
|
)
|
|
alpha = 0.3
|
|
|
|
self.overlay_instances(
|
|
masks=masks,
|
|
boxes=boxes,
|
|
labels=labels,
|
|
keypoints=keypoints,
|
|
assigned_colors=colors,
|
|
alpha=alpha,
|
|
)
|
|
return self.output
|
|
|
|
def draw_sem_seg(self, sem_seg, area_threshold=None, alpha=0.8):
|
|
"""
|
|
Draw semantic segmentation predictions/labels.
|
|
|
|
Args:
|
|
sem_seg (Tensor or ndarray): the segmentation of shape (H, W).
|
|
Each value is the integer label of the pixel.
|
|
area_threshold (int): segments with less than `area_threshold` are not drawn.
|
|
alpha (float): the larger it is, the more opaque the segmentations are.
|
|
|
|
Returns:
|
|
output (VisImage): image object with visualizations.
|
|
"""
|
|
if isinstance(sem_seg, torch.Tensor):
|
|
sem_seg = sem_seg.numpy()
|
|
labels, areas = np.unique(sem_seg, return_counts=True)
|
|
sorted_idxs = np.argsort(-areas).tolist()
|
|
labels = labels[sorted_idxs]
|
|
for label in filter(lambda l: l < len(self.metadata.stuff_classes), labels):
|
|
try:
|
|
mask_color = [x / 255 for x in self.metadata.stuff_colors[label]]
|
|
except (AttributeError, IndexError):
|
|
mask_color = None
|
|
|
|
binary_mask = (sem_seg == label).astype(np.uint8)
|
|
text = self.metadata.stuff_classes[label]
|
|
self.draw_binary_mask(
|
|
binary_mask,
|
|
color=mask_color,
|
|
edge_color=_OFF_WHITE,
|
|
text=text,
|
|
alpha=alpha,
|
|
area_threshold=area_threshold,
|
|
)
|
|
return self.output
|
|
|
|
def draw_panoptic_seg(self, panoptic_seg, segments_info, area_threshold=None, alpha=0.7):
|
|
"""
|
|
Draw panoptic prediction annotations or results.
|
|
|
|
Args:
|
|
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each
|
|
segment.
|
|
segments_info (list[dict] or None): Describe each segment in `panoptic_seg`.
|
|
If it is a ``list[dict]``, each dict contains keys "id", "category_id".
|
|
If None, category id of each pixel is computed by
|
|
``pixel // metadata.label_divisor``.
|
|
area_threshold (int): stuff segments with less than `area_threshold` are not drawn.
|
|
|
|
Returns:
|
|
output (VisImage): image object with visualizations.
|
|
"""
|
|
pred = _PanopticPrediction(panoptic_seg, segments_info, self.metadata)
|
|
|
|
if self._instance_mode == ColorMode.IMAGE_BW:
|
|
self.output.reset_image(self._create_grayscale_image(pred.non_empty_mask()))
|
|
|
|
|
|
for mask, sinfo in pred.semantic_masks():
|
|
category_idx = sinfo["category_id"]
|
|
try:
|
|
mask_color = [x / 255 for x in self.metadata.stuff_colors[category_idx]]
|
|
except AttributeError:
|
|
mask_color = None
|
|
|
|
text = self.metadata.stuff_classes[category_idx]
|
|
self.draw_binary_mask(
|
|
mask,
|
|
color=mask_color,
|
|
edge_color=_OFF_WHITE,
|
|
text=text,
|
|
alpha=alpha,
|
|
area_threshold=area_threshold,
|
|
)
|
|
|
|
|
|
all_instances = list(pred.instance_masks())
|
|
if len(all_instances) == 0:
|
|
return self.output
|
|
masks, sinfo = list(zip(*all_instances))
|
|
category_ids = [x["category_id"] for x in sinfo]
|
|
|
|
try:
|
|
scores = [x["score"] for x in sinfo]
|
|
except KeyError:
|
|
scores = None
|
|
labels = _create_text_labels(
|
|
category_ids, scores, self.metadata.thing_classes, [x.get("iscrowd", 0) for x in sinfo]
|
|
)
|
|
|
|
try:
|
|
colors = [
|
|
self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in category_ids
|
|
]
|
|
except AttributeError:
|
|
colors = None
|
|
self.overlay_instances(masks=masks, labels=labels, assigned_colors=colors, alpha=alpha)
|
|
|
|
return self.output
|
|
|
|
draw_panoptic_seg_predictions = draw_panoptic_seg
|
|
|
|
def draw_dataset_dict(self, dic):
|
|
"""
|
|
Draw annotations/segmentations in Detectron2 Dataset format.
|
|
|
|
Args:
|
|
dic (dict): annotation/segmentation data of one image, in Detectron2 Dataset format.
|
|
|
|
Returns:
|
|
output (VisImage): image object with visualizations.
|
|
"""
|
|
annos = dic.get("annotations", None)
|
|
if annos:
|
|
if "segmentation" in annos[0]:
|
|
masks = [x["segmentation"] for x in annos]
|
|
else:
|
|
masks = None
|
|
if "keypoints" in annos[0]:
|
|
keypts = [x["keypoints"] for x in annos]
|
|
keypts = np.array(keypts).reshape(len(annos), -1, 3)
|
|
else:
|
|
keypts = None
|
|
|
|
boxes = [
|
|
(
|
|
BoxMode.convert(x["bbox"], x["bbox_mode"], BoxMode.XYXY_ABS)
|
|
if len(x["bbox"]) == 4
|
|
else x["bbox"]
|
|
)
|
|
for x in annos
|
|
]
|
|
|
|
colors = None
|
|
category_ids = [x["category_id"] for x in annos]
|
|
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"):
|
|
colors = [
|
|
self._jitter([x / 255 for x in self.metadata.thing_colors[c]])
|
|
for c in category_ids
|
|
]
|
|
names = self.metadata.get("thing_classes", None)
|
|
labels = _create_text_labels(
|
|
category_ids,
|
|
scores=None,
|
|
class_names=names,
|
|
is_crowd=[x.get("iscrowd", 0) for x in annos],
|
|
)
|
|
self.overlay_instances(
|
|
labels=labels, boxes=boxes, masks=masks, keypoints=keypts, assigned_colors=colors
|
|
)
|
|
|
|
sem_seg = dic.get("sem_seg", None)
|
|
if sem_seg is None and "sem_seg_file_name" in dic:
|
|
with PathManager.open(dic["sem_seg_file_name"], "rb") as f:
|
|
sem_seg = Image.open(f)
|
|
sem_seg = np.asarray(sem_seg, dtype="uint8")
|
|
if sem_seg is not None:
|
|
self.draw_sem_seg(sem_seg, area_threshold=0, alpha=0.5)
|
|
|
|
pan_seg = dic.get("pan_seg", None)
|
|
if pan_seg is None and "pan_seg_file_name" in dic:
|
|
with PathManager.open(dic["pan_seg_file_name"], "rb") as f:
|
|
pan_seg = Image.open(f)
|
|
pan_seg = np.asarray(pan_seg)
|
|
from panopticapi.utils import rgb2id
|
|
|
|
pan_seg = rgb2id(pan_seg)
|
|
if pan_seg is not None:
|
|
segments_info = dic["segments_info"]
|
|
pan_seg = torch.tensor(pan_seg)
|
|
self.draw_panoptic_seg(pan_seg, segments_info, area_threshold=0, alpha=0.5)
|
|
return self.output
|
|
|
|
def overlay_instances(
|
|
self,
|
|
*,
|
|
boxes=None,
|
|
labels=None,
|
|
masks=None,
|
|
keypoints=None,
|
|
assigned_colors=None,
|
|
alpha=0.5,
|
|
):
|
|
"""
|
|
Args:
|
|
boxes (Boxes, RotatedBoxes or ndarray): either a :class:`Boxes`,
|
|
or an Nx4 numpy array of XYXY_ABS format for the N objects in a single image,
|
|
or a :class:`RotatedBoxes`,
|
|
or an Nx5 numpy array of (x_center, y_center, width, height, angle_degrees) format
|
|
for the N objects in a single image,
|
|
labels (list[str]): the text to be displayed for each instance.
|
|
masks (masks-like object): Supported types are:
|
|
|
|
* :class:`detectron2.structures.PolygonMasks`,
|
|
:class:`detectron2.structures.BitMasks`.
|
|
* list[list[ndarray]]: contains the segmentation masks for all objects in one image.
|
|
The first level of the list corresponds to individual instances. The second
|
|
level to all the polygon that compose the instance, and the third level
|
|
to the polygon coordinates. The third level should have the format of
|
|
[x0, y0, x1, y1, ..., xn, yn] (n >= 3).
|
|
* list[ndarray]: each ndarray is a binary mask of shape (H, W).
|
|
* list[dict]: each dict is a COCO-style RLE.
|
|
keypoints (Keypoint or array like): an array-like object of shape (N, K, 3),
|
|
where the N is the number of instances and K is the number of keypoints.
|
|
The last dimension corresponds to (x, y, visibility or score).
|
|
assigned_colors (list[matplotlib.colors]): a list of colors, where each color
|
|
corresponds to each mask or box in the image. Refer to 'matplotlib.colors'
|
|
for full list of formats that the colors are accepted in.
|
|
Returns:
|
|
output (VisImage): image object with visualizations.
|
|
"""
|
|
num_instances = 0
|
|
if boxes is not None:
|
|
boxes = self._convert_boxes(boxes)
|
|
num_instances = len(boxes)
|
|
if masks is not None:
|
|
masks = self._convert_masks(masks)
|
|
if num_instances:
|
|
assert len(masks) == num_instances
|
|
else:
|
|
num_instances = len(masks)
|
|
if keypoints is not None:
|
|
if num_instances:
|
|
assert len(keypoints) == num_instances
|
|
else:
|
|
num_instances = len(keypoints)
|
|
keypoints = self._convert_keypoints(keypoints)
|
|
if labels is not None:
|
|
assert len(labels) == num_instances
|
|
if assigned_colors is None:
|
|
assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)]
|
|
if num_instances == 0:
|
|
return self.output
|
|
if boxes is not None and boxes.shape[1] == 5:
|
|
return self.overlay_rotated_instances(
|
|
boxes=boxes, labels=labels, assigned_colors=assigned_colors
|
|
)
|
|
|
|
|
|
areas = None
|
|
if boxes is not None:
|
|
areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1)
|
|
elif masks is not None:
|
|
areas = np.asarray([x.area() for x in masks])
|
|
|
|
if areas is not None:
|
|
sorted_idxs = np.argsort(-areas).tolist()
|
|
|
|
boxes = boxes[sorted_idxs] if boxes is not None else None
|
|
labels = [labels[k] for k in sorted_idxs] if labels is not None else None
|
|
masks = [masks[idx] for idx in sorted_idxs] if masks is not None else None
|
|
assigned_colors = [assigned_colors[idx] for idx in sorted_idxs]
|
|
keypoints = keypoints[sorted_idxs] if keypoints is not None else None
|
|
|
|
for i in range(num_instances):
|
|
color = assigned_colors[i]
|
|
if boxes is not None:
|
|
self.draw_box(boxes[i], edge_color=color)
|
|
|
|
if masks is not None:
|
|
for segment in masks[i].polygons:
|
|
self.draw_polygon(segment.reshape(-1, 2), color, alpha=alpha)
|
|
|
|
if labels is not None:
|
|
|
|
if boxes is not None:
|
|
x0, y0, x1, y1 = boxes[i]
|
|
text_pos = (x0, y0)
|
|
horiz_align = "left"
|
|
elif masks is not None:
|
|
|
|
if len(masks[i].polygons) == 0:
|
|
continue
|
|
|
|
x0, y0, x1, y1 = masks[i].bbox()
|
|
|
|
|
|
|
|
text_pos = np.median(masks[i].mask.nonzero(), axis=1)[::-1]
|
|
horiz_align = "center"
|
|
else:
|
|
continue
|
|
|
|
instance_area = (y1 - y0) * (x1 - x0)
|
|
if (
|
|
instance_area < _SMALL_OBJECT_AREA_THRESH * self.output.scale
|
|
or y1 - y0 < 40 * self.output.scale
|
|
):
|
|
if y1 >= self.output.height - 5:
|
|
text_pos = (x1, y0)
|
|
else:
|
|
text_pos = (x0, y1)
|
|
|
|
height_ratio = (y1 - y0) / np.sqrt(self.output.height * self.output.width)
|
|
lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
|
|
font_size = (
|
|
np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2)
|
|
* 0.5
|
|
* self._default_font_size
|
|
)
|
|
self.draw_text(
|
|
labels[i],
|
|
text_pos,
|
|
color=lighter_color,
|
|
horizontal_alignment=horiz_align,
|
|
font_size=font_size,
|
|
)
|
|
|
|
|
|
if keypoints is not None:
|
|
for keypoints_per_instance in keypoints:
|
|
self.draw_and_connect_keypoints(keypoints_per_instance)
|
|
|
|
return self.output
|
|
|
|
def overlay_rotated_instances(self, boxes=None, labels=None, assigned_colors=None):
|
|
"""
|
|
Args:
|
|
boxes (ndarray): an Nx5 numpy array of
|
|
(x_center, y_center, width, height, angle_degrees) format
|
|
for the N objects in a single image.
|
|
labels (list[str]): the text to be displayed for each instance.
|
|
assigned_colors (list[matplotlib.colors]): a list of colors, where each color
|
|
corresponds to each mask or box in the image. Refer to 'matplotlib.colors'
|
|
for full list of formats that the colors are accepted in.
|
|
|
|
Returns:
|
|
output (VisImage): image object with visualizations.
|
|
"""
|
|
num_instances = len(boxes)
|
|
|
|
if assigned_colors is None:
|
|
assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)]
|
|
if num_instances == 0:
|
|
return self.output
|
|
|
|
|
|
if boxes is not None:
|
|
areas = boxes[:, 2] * boxes[:, 3]
|
|
|
|
sorted_idxs = np.argsort(-areas).tolist()
|
|
|
|
boxes = boxes[sorted_idxs]
|
|
labels = [labels[k] for k in sorted_idxs] if labels is not None else None
|
|
colors = [assigned_colors[idx] for idx in sorted_idxs]
|
|
|
|
for i in range(num_instances):
|
|
self.draw_rotated_box_with_label(
|
|
boxes[i], edge_color=colors[i], label=labels[i] if labels is not None else None
|
|
)
|
|
|
|
return self.output
|
|
|
|
def draw_and_connect_keypoints(self, keypoints):
|
|
"""
|
|
Draws keypoints of an instance and follows the rules for keypoint connections
|
|
to draw lines between appropriate keypoints. This follows color heuristics for
|
|
line color.
|
|
|
|
Args:
|
|
keypoints (Tensor): a tensor of shape (K, 3), where K is the number of keypoints
|
|
and the last dimension corresponds to (x, y, probability).
|
|
|
|
Returns:
|
|
output (VisImage): image object with visualizations.
|
|
"""
|
|
visible = {}
|
|
keypoint_names = self.metadata.get("keypoint_names")
|
|
for idx, keypoint in enumerate(keypoints):
|
|
|
|
|
|
x, y, prob = keypoint
|
|
if prob > self.keypoint_threshold:
|
|
self.draw_circle((x, y), color=_RED)
|
|
if keypoint_names:
|
|
keypoint_name = keypoint_names[idx]
|
|
visible[keypoint_name] = (x, y)
|
|
|
|
if self.metadata.get("keypoint_connection_rules"):
|
|
for kp0, kp1, color in self.metadata.keypoint_connection_rules:
|
|
if kp0 in visible and kp1 in visible:
|
|
x0, y0 = visible[kp0]
|
|
x1, y1 = visible[kp1]
|
|
color = tuple(x / 255.0 for x in color)
|
|
self.draw_line([x0, x1], [y0, y1], color=color)
|
|
|
|
|
|
|
|
|
|
try:
|
|
ls_x, ls_y = visible["left_shoulder"]
|
|
rs_x, rs_y = visible["right_shoulder"]
|
|
mid_shoulder_x, mid_shoulder_y = (ls_x + rs_x) / 2, (ls_y + rs_y) / 2
|
|
except KeyError:
|
|
pass
|
|
else:
|
|
|
|
nose_x, nose_y = visible.get("nose", (None, None))
|
|
if nose_x is not None:
|
|
self.draw_line([nose_x, mid_shoulder_x], [nose_y, mid_shoulder_y], color=_RED)
|
|
|
|
try:
|
|
|
|
lh_x, lh_y = visible["left_hip"]
|
|
rh_x, rh_y = visible["right_hip"]
|
|
except KeyError:
|
|
pass
|
|
else:
|
|
mid_hip_x, mid_hip_y = (lh_x + rh_x) / 2, (lh_y + rh_y) / 2
|
|
self.draw_line([mid_hip_x, mid_shoulder_x], [mid_hip_y, mid_shoulder_y], color=_RED)
|
|
return self.output
|
|
|
|
"""
|
|
Primitive drawing functions:
|
|
"""
|
|
|
|
def draw_text(
|
|
self,
|
|
text,
|
|
position,
|
|
*,
|
|
font_size=None,
|
|
color="g",
|
|
horizontal_alignment="center",
|
|
rotation=0,
|
|
):
|
|
"""
|
|
Args:
|
|
text (str): class label
|
|
position (tuple): a tuple of the x and y coordinates to place text on image.
|
|
font_size (int, optional): font of the text. If not provided, a font size
|
|
proportional to the image width is calculated and used.
|
|
color: color of the text. Refer to `matplotlib.colors` for full list
|
|
of formats that are accepted.
|
|
horizontal_alignment (str): see `matplotlib.text.Text`
|
|
rotation: rotation angle in degrees CCW
|
|
|
|
Returns:
|
|
output (VisImage): image object with text drawn.
|
|
"""
|
|
if not font_size:
|
|
font_size = self._default_font_size
|
|
|
|
|
|
color = np.maximum(list(mplc.to_rgb(color)), 0.2)
|
|
color[np.argmax(color)] = max(0.8, np.max(color))
|
|
|
|
x, y = position
|
|
self.output.ax.text(
|
|
x,
|
|
y,
|
|
text,
|
|
size=font_size * self.output.scale,
|
|
family="sans-serif",
|
|
bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
|
|
verticalalignment="top",
|
|
horizontalalignment=horizontal_alignment,
|
|
color=color,
|
|
zorder=10,
|
|
rotation=rotation,
|
|
)
|
|
return self.output
|
|
|
|
def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"):
|
|
"""
|
|
Args:
|
|
box_coord (tuple): a tuple containing x0, y0, x1, y1 coordinates, where x0 and y0
|
|
are the coordinates of the image's top left corner. x1 and y1 are the
|
|
coordinates of the image's bottom right corner.
|
|
alpha (float): blending efficient. Smaller values lead to more transparent masks.
|
|
edge_color: color of the outline of the box. Refer to `matplotlib.colors`
|
|
for full list of formats that are accepted.
|
|
line_style (string): the string to use to create the outline of the boxes.
|
|
|
|
Returns:
|
|
output (VisImage): image object with box drawn.
|
|
"""
|
|
x0, y0, x1, y1 = box_coord
|
|
width = x1 - x0
|
|
height = y1 - y0
|
|
|
|
linewidth = max(self._default_font_size / 4, 1)
|
|
|
|
self.output.ax.add_patch(
|
|
mpl.patches.Rectangle(
|
|
(x0, y0),
|
|
width,
|
|
height,
|
|
fill=False,
|
|
edgecolor=edge_color,
|
|
linewidth=linewidth * self.output.scale,
|
|
alpha=alpha,
|
|
linestyle=line_style,
|
|
)
|
|
)
|
|
return self.output
|
|
|
|
def draw_rotated_box_with_label(
|
|
self, rotated_box, alpha=0.5, edge_color="g", line_style="-", label=None
|
|
):
|
|
"""
|
|
Draw a rotated box with label on its top-left corner.
|
|
|
|
Args:
|
|
rotated_box (tuple): a tuple containing (cnt_x, cnt_y, w, h, angle),
|
|
where cnt_x and cnt_y are the center coordinates of the box.
|
|
w and h are the width and height of the box. angle represents how
|
|
many degrees the box is rotated CCW with regard to the 0-degree box.
|
|
alpha (float): blending efficient. Smaller values lead to more transparent masks.
|
|
edge_color: color of the outline of the box. Refer to `matplotlib.colors`
|
|
for full list of formats that are accepted.
|
|
line_style (string): the string to use to create the outline of the boxes.
|
|
label (string): label for rotated box. It will not be rendered when set to None.
|
|
|
|
Returns:
|
|
output (VisImage): image object with box drawn.
|
|
"""
|
|
cnt_x, cnt_y, w, h, angle = rotated_box
|
|
area = w * h
|
|
|
|
linewidth = self._default_font_size / (
|
|
6 if area < _SMALL_OBJECT_AREA_THRESH * self.output.scale else 3
|
|
)
|
|
|
|
theta = angle * math.pi / 180.0
|
|
c = math.cos(theta)
|
|
s = math.sin(theta)
|
|
rect = [(-w / 2, h / 2), (-w / 2, -h / 2), (w / 2, -h / 2), (w / 2, h / 2)]
|
|
|
|
rotated_rect = [(s * yy + c * xx + cnt_x, c * yy - s * xx + cnt_y) for (xx, yy) in rect]
|
|
for k in range(4):
|
|
j = (k + 1) % 4
|
|
self.draw_line(
|
|
[rotated_rect[k][0], rotated_rect[j][0]],
|
|
[rotated_rect[k][1], rotated_rect[j][1]],
|
|
color=edge_color,
|
|
linestyle="--" if k == 1 else line_style,
|
|
linewidth=linewidth,
|
|
)
|
|
|
|
if label is not None:
|
|
text_pos = rotated_rect[1]
|
|
|
|
height_ratio = h / np.sqrt(self.output.height * self.output.width)
|
|
label_color = self._change_color_brightness(edge_color, brightness_factor=0.7)
|
|
font_size = (
|
|
np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) * 0.5 * self._default_font_size
|
|
)
|
|
self.draw_text(label, text_pos, color=label_color, font_size=font_size, rotation=angle)
|
|
|
|
return self.output
|
|
|
|
def draw_circle(self, circle_coord, color, radius=3):
|
|
"""
|
|
Args:
|
|
circle_coord (list(int) or tuple(int)): contains the x and y coordinates
|
|
of the center of the circle.
|
|
color: color of the polygon. Refer to `matplotlib.colors` for a full list of
|
|
formats that are accepted.
|
|
radius (int): radius of the circle.
|
|
|
|
Returns:
|
|
output (VisImage): image object with box drawn.
|
|
"""
|
|
x, y = circle_coord
|
|
self.output.ax.add_patch(
|
|
mpl.patches.Circle(circle_coord, radius=radius, fill=True, color=color)
|
|
)
|
|
return self.output
|
|
|
|
def draw_line(self, x_data, y_data, color, linestyle="-", linewidth=None):
|
|
"""
|
|
Args:
|
|
x_data (list[int]): a list containing x values of all the points being drawn.
|
|
Length of list should match the length of y_data.
|
|
y_data (list[int]): a list containing y values of all the points being drawn.
|
|
Length of list should match the length of x_data.
|
|
color: color of the line. Refer to `matplotlib.colors` for a full list of
|
|
formats that are accepted.
|
|
linestyle: style of the line. Refer to `matplotlib.lines.Line2D`
|
|
for a full list of formats that are accepted.
|
|
linewidth (float or None): width of the line. When it's None,
|
|
a default value will be computed and used.
|
|
|
|
Returns:
|
|
output (VisImage): image object with line drawn.
|
|
"""
|
|
if linewidth is None:
|
|
linewidth = self._default_font_size / 3
|
|
linewidth = max(linewidth, 1)
|
|
self.output.ax.add_line(
|
|
mpl.lines.Line2D(
|
|
x_data,
|
|
y_data,
|
|
linewidth=linewidth * self.output.scale,
|
|
color=color,
|
|
linestyle=linestyle,
|
|
)
|
|
)
|
|
return self.output
|
|
|
|
def draw_binary_mask(
|
|
self, binary_mask, color=None, *, edge_color=None, text=None, alpha=0.5, area_threshold=10
|
|
):
|
|
"""
|
|
Args:
|
|
binary_mask (ndarray): numpy array of shape (H, W), where H is the image height and
|
|
W is the image width. Each value in the array is either a 0 or 1 value of uint8
|
|
type.
|
|
color: color of the mask. Refer to `matplotlib.colors` for a full list of
|
|
formats that are accepted. If None, will pick a random color.
|
|
edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
|
|
full list of formats that are accepted.
|
|
text (str): if None, will be drawn on the object
|
|
alpha (float): blending efficient. Smaller values lead to more transparent masks.
|
|
area_threshold (float): a connected component smaller than this area will not be shown.
|
|
|
|
Returns:
|
|
output (VisImage): image object with mask drawn.
|
|
"""
|
|
if color is None:
|
|
color = random_color(rgb=True, maximum=1)
|
|
color = mplc.to_rgb(color)
|
|
|
|
has_valid_segment = False
|
|
binary_mask = binary_mask.astype("uint8")
|
|
mask = GenericMask(binary_mask, self.output.height, self.output.width)
|
|
shape2d = (binary_mask.shape[0], binary_mask.shape[1])
|
|
|
|
if not mask.has_holes:
|
|
|
|
for segment in mask.polygons:
|
|
area = mask_util.area(mask_util.frPyObjects([segment], shape2d[0], shape2d[1]))
|
|
if area < (area_threshold or 0):
|
|
continue
|
|
has_valid_segment = True
|
|
segment = segment.reshape(-1, 2)
|
|
self.draw_polygon(segment, color=color, edge_color=edge_color, alpha=alpha)
|
|
else:
|
|
|
|
|
|
rgba = np.zeros(shape2d + (4,), dtype="float32")
|
|
rgba[:, :, :3] = color
|
|
rgba[:, :, 3] = (mask.mask == 1).astype("float32") * alpha
|
|
has_valid_segment = True
|
|
self.output.ax.imshow(rgba, extent=(0, self.output.width, self.output.height, 0))
|
|
|
|
if text is not None and has_valid_segment:
|
|
lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
|
|
self._draw_text_in_mask(binary_mask, text, lighter_color)
|
|
return self.output
|
|
|
|
def draw_soft_mask(self, soft_mask, color=None, *, text=None, alpha=0.5):
|
|
"""
|
|
Args:
|
|
soft_mask (ndarray): float array of shape (H, W), each value in [0, 1].
|
|
color: color of the mask. Refer to `matplotlib.colors` for a full list of
|
|
formats that are accepted. If None, will pick a random color.
|
|
text (str): if None, will be drawn on the object
|
|
alpha (float): blending efficient. Smaller values lead to more transparent masks.
|
|
|
|
Returns:
|
|
output (VisImage): image object with mask drawn.
|
|
"""
|
|
if color is None:
|
|
color = random_color(rgb=True, maximum=1)
|
|
color = mplc.to_rgb(color)
|
|
|
|
shape2d = (soft_mask.shape[0], soft_mask.shape[1])
|
|
rgba = np.zeros(shape2d + (4,), dtype="float32")
|
|
rgba[:, :, :3] = color
|
|
rgba[:, :, 3] = soft_mask * alpha
|
|
self.output.ax.imshow(rgba, extent=(0, self.output.width, self.output.height, 0))
|
|
|
|
if text is not None:
|
|
lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
|
|
binary_mask = (soft_mask > 0.5).astype("uint8")
|
|
self._draw_text_in_mask(binary_mask, text, lighter_color)
|
|
return self.output
|
|
|
|
def draw_polygon(self, segment, color, edge_color=None, alpha=0.5):
|
|
"""
|
|
Args:
|
|
segment: numpy array of shape Nx2, containing all the points in the polygon.
|
|
color: color of the polygon. Refer to `matplotlib.colors` for a full list of
|
|
formats that are accepted.
|
|
edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
|
|
full list of formats that are accepted. If not provided, a darker shade
|
|
of the polygon color will be used instead.
|
|
alpha (float): blending efficient. Smaller values lead to more transparent masks.
|
|
|
|
Returns:
|
|
output (VisImage): image object with polygon drawn.
|
|
"""
|
|
if edge_color is None:
|
|
|
|
if alpha > 0.8:
|
|
edge_color = self._change_color_brightness(color, brightness_factor=-0.7)
|
|
else:
|
|
edge_color = color
|
|
edge_color = mplc.to_rgb(edge_color) + (1,)
|
|
|
|
polygon = mpl.patches.Polygon(
|
|
segment,
|
|
fill=True,
|
|
facecolor=mplc.to_rgb(color) + (alpha,),
|
|
edgecolor=edge_color,
|
|
linewidth=max(self._default_font_size // 15 * self.output.scale, 1),
|
|
)
|
|
self.output.ax.add_patch(polygon)
|
|
return self.output
|
|
|
|
"""
|
|
Internal methods:
|
|
"""
|
|
|
|
def _jitter(self, color):
|
|
"""
|
|
Randomly modifies given color to produce a slightly different color than the color given.
|
|
|
|
Args:
|
|
color (tuple[double]): a tuple of 3 elements, containing the RGB values of the color
|
|
picked. The values in the list are in the [0.0, 1.0] range.
|
|
|
|
Returns:
|
|
jittered_color (tuple[double]): a tuple of 3 elements, containing the RGB values of the
|
|
color after being jittered. The values in the list are in the [0.0, 1.0] range.
|
|
"""
|
|
color = mplc.to_rgb(color)
|
|
vec = np.random.rand(3)
|
|
|
|
vec = vec / np.linalg.norm(vec) * 0.5
|
|
res = np.clip(vec + color, 0, 1)
|
|
return tuple(res)
|
|
|
|
def _create_grayscale_image(self, mask=None):
|
|
"""
|
|
Create a grayscale version of the original image.
|
|
The colors in masked area, if given, will be kept.
|
|
"""
|
|
img_bw = self.img.astype("f4").mean(axis=2)
|
|
img_bw = np.stack([img_bw] * 3, axis=2)
|
|
if mask is not None:
|
|
img_bw[mask] = self.img[mask]
|
|
return img_bw
|
|
|
|
def _change_color_brightness(self, color, brightness_factor):
|
|
"""
|
|
Depending on the brightness_factor, gives a lighter or darker color i.e. a color with
|
|
less or more saturation than the original color.
|
|
|
|
Args:
|
|
color: color of the polygon. Refer to `matplotlib.colors` for a full list of
|
|
formats that are accepted.
|
|
brightness_factor (float): a value in [-1.0, 1.0] range. A lightness factor of
|
|
0 will correspond to no change, a factor in [-1.0, 0) range will result in
|
|
a darker color and a factor in (0, 1.0] range will result in a lighter color.
|
|
|
|
Returns:
|
|
modified_color (tuple[double]): a tuple containing the RGB values of the
|
|
modified color. Each value in the tuple is in the [0.0, 1.0] range.
|
|
"""
|
|
assert brightness_factor >= -1.0 and brightness_factor <= 1.0
|
|
color = mplc.to_rgb(color)
|
|
polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color))
|
|
modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1])
|
|
modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness
|
|
modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness
|
|
modified_color = colorsys.hls_to_rgb(polygon_color[0], modified_lightness, polygon_color[2])
|
|
return tuple(np.clip(modified_color, 0.0, 1.0))
|
|
|
|
def _convert_boxes(self, boxes):
|
|
"""
|
|
Convert different format of boxes to an NxB array, where B = 4 or 5 is the box dimension.
|
|
"""
|
|
if isinstance(boxes, Boxes) or isinstance(boxes, RotatedBoxes):
|
|
return boxes.tensor.detach().numpy()
|
|
else:
|
|
return np.asarray(boxes)
|
|
|
|
def _convert_masks(self, masks_or_polygons):
|
|
"""
|
|
Convert different format of masks or polygons to a tuple of masks and polygons.
|
|
|
|
Returns:
|
|
list[GenericMask]:
|
|
"""
|
|
|
|
m = masks_or_polygons
|
|
if isinstance(m, PolygonMasks):
|
|
m = m.polygons
|
|
if isinstance(m, BitMasks):
|
|
m = m.tensor.numpy()
|
|
if isinstance(m, torch.Tensor):
|
|
m = m.numpy()
|
|
ret = []
|
|
for x in m:
|
|
if isinstance(x, GenericMask):
|
|
ret.append(x)
|
|
else:
|
|
ret.append(GenericMask(x, self.output.height, self.output.width))
|
|
return ret
|
|
|
|
def _draw_text_in_mask(self, binary_mask, text, color):
|
|
"""
|
|
Find proper places to draw text given a binary mask.
|
|
"""
|
|
|
|
_num_cc, cc_labels, stats, centroids = cv2.connectedComponentsWithStats(binary_mask, 8)
|
|
if stats[1:, -1].size == 0:
|
|
return
|
|
largest_component_id = np.argmax(stats[1:, -1]) + 1
|
|
|
|
|
|
for cid in range(1, _num_cc):
|
|
if cid == largest_component_id or stats[cid, -1] > _LARGE_MASK_AREA_THRESH:
|
|
|
|
|
|
center = np.median((cc_labels == cid).nonzero(), axis=1)[::-1]
|
|
self.draw_text(text, center, color=color)
|
|
|
|
def _convert_keypoints(self, keypoints):
|
|
if isinstance(keypoints, Keypoints):
|
|
keypoints = keypoints.tensor
|
|
keypoints = np.asarray(keypoints)
|
|
return keypoints
|
|
|
|
def get_output(self):
|
|
"""
|
|
Returns:
|
|
output (VisImage): the image output containing the visualizations added
|
|
to the image.
|
|
"""
|
|
return self.output
|
|
|