|
|
|
import numpy as np
|
|
from typing import List
|
|
import pycocotools.mask as mask_util
|
|
|
|
from detectron2.structures import Instances
|
|
from detectron2.utils.visualizer import (
|
|
ColorMode,
|
|
Visualizer,
|
|
_create_text_labels,
|
|
_PanopticPrediction,
|
|
)
|
|
|
|
from .colormap import random_color, random_colors
|
|
|
|
|
|
class _DetectedInstance:
|
|
"""
|
|
Used to store data about detected objects in video frame,
|
|
in order to transfer color to objects in the future frames.
|
|
|
|
Attributes:
|
|
label (int):
|
|
bbox (tuple[float]):
|
|
mask_rle (dict):
|
|
color (tuple[float]): RGB colors in range (0, 1)
|
|
ttl (int): time-to-live for the instance. For example, if ttl=2,
|
|
the instance color can be transferred to objects in the next two frames.
|
|
"""
|
|
|
|
__slots__ = ["label", "bbox", "mask_rle", "color", "ttl"]
|
|
|
|
def __init__(self, label, bbox, mask_rle, color, ttl):
|
|
self.label = label
|
|
self.bbox = bbox
|
|
self.mask_rle = mask_rle
|
|
self.color = color
|
|
self.ttl = ttl
|
|
|
|
|
|
class VideoVisualizer:
|
|
def __init__(self, metadata, instance_mode=ColorMode.IMAGE):
|
|
"""
|
|
Args:
|
|
metadata (MetadataCatalog): image metadata.
|
|
"""
|
|
self.metadata = metadata
|
|
self._old_instances = []
|
|
assert instance_mode in [
|
|
ColorMode.IMAGE,
|
|
ColorMode.IMAGE_BW,
|
|
], "Other mode not supported yet."
|
|
self._instance_mode = instance_mode
|
|
self._max_num_instances = self.metadata.get("max_num_instances", 74)
|
|
self._assigned_colors = {}
|
|
self._color_pool = random_colors(self._max_num_instances, rgb=True, maximum=1)
|
|
self._color_idx_set = set(range(len(self._color_pool)))
|
|
|
|
def draw_instance_predictions(self, frame, predictions):
|
|
"""
|
|
Draw instance-level prediction results on an image.
|
|
|
|
Args:
|
|
frame (ndarray): an RGB image of shape (H, W, C), in the range [0, 255].
|
|
predictions (Instances): the output of an instance detection/segmentation
|
|
model. Following fields will be used to draw:
|
|
"pred_boxes", "pred_classes", "scores", "pred_masks" (or "pred_masks_rle").
|
|
|
|
Returns:
|
|
output (VisImage): image object with visualizations.
|
|
"""
|
|
frame_visualizer = Visualizer(frame, self.metadata)
|
|
num_instances = len(predictions)
|
|
if num_instances == 0:
|
|
return frame_visualizer.output
|
|
|
|
boxes = predictions.pred_boxes.tensor.numpy() if predictions.has("pred_boxes") else None
|
|
scores = predictions.scores if predictions.has("scores") else None
|
|
classes = predictions.pred_classes.numpy() if predictions.has("pred_classes") else None
|
|
keypoints = predictions.pred_keypoints if predictions.has("pred_keypoints") else None
|
|
colors = predictions.COLOR if predictions.has("COLOR") else [None] * len(predictions)
|
|
periods = predictions.ID_period if predictions.has("ID_period") else None
|
|
period_threshold = self.metadata.get("period_threshold", 0)
|
|
visibilities = (
|
|
[True] * len(predictions)
|
|
if periods is None
|
|
else [x > period_threshold for x in periods]
|
|
)
|
|
|
|
if predictions.has("pred_masks"):
|
|
masks = predictions.pred_masks
|
|
|
|
|
|
|
|
else:
|
|
masks = None
|
|
|
|
if not predictions.has("COLOR"):
|
|
if predictions.has("ID"):
|
|
colors = self._assign_colors_by_id(predictions)
|
|
else:
|
|
|
|
detected = [
|
|
_DetectedInstance(classes[i], boxes[i], mask_rle=None, color=colors[i], ttl=8)
|
|
for i in range(num_instances)
|
|
]
|
|
colors = self._assign_colors(detected)
|
|
|
|
labels = _create_text_labels(classes, scores, self.metadata.get("thing_classes", None))
|
|
|
|
if self._instance_mode == ColorMode.IMAGE_BW:
|
|
|
|
frame_visualizer.output.reset_image(
|
|
frame_visualizer._create_grayscale_image(
|
|
(masks.any(dim=0) > 0).numpy() if masks is not None else None
|
|
)
|
|
)
|
|
alpha = 0.3
|
|
else:
|
|
alpha = 0.5
|
|
|
|
labels = (
|
|
None
|
|
if labels is None
|
|
else [y[0] for y in filter(lambda x: x[1], zip(labels, visibilities))]
|
|
)
|
|
assigned_colors = (
|
|
None
|
|
if colors is None
|
|
else [y[0] for y in filter(lambda x: x[1], zip(colors, visibilities))]
|
|
)
|
|
frame_visualizer.overlay_instances(
|
|
boxes=None if masks is not None else boxes[visibilities],
|
|
masks=None if masks is None else masks[visibilities],
|
|
labels=labels,
|
|
keypoints=None if keypoints is None else keypoints[visibilities],
|
|
assigned_colors=assigned_colors,
|
|
alpha=alpha,
|
|
)
|
|
|
|
return frame_visualizer.output
|
|
|
|
def draw_sem_seg(self, frame, sem_seg, area_threshold=None):
|
|
"""
|
|
Args:
|
|
sem_seg (ndarray or Tensor): semantic segmentation of shape (H, W),
|
|
each value is the integer label.
|
|
area_threshold (Optional[int]): only draw segmentations larger than the threshold
|
|
"""
|
|
|
|
frame_visualizer = Visualizer(frame, self.metadata)
|
|
frame_visualizer.draw_sem_seg(sem_seg, area_threshold=None)
|
|
return frame_visualizer.output
|
|
|
|
def draw_panoptic_seg_predictions(
|
|
self, frame, panoptic_seg, segments_info, area_threshold=None, alpha=0.5
|
|
):
|
|
frame_visualizer = Visualizer(frame, self.metadata)
|
|
pred = _PanopticPrediction(panoptic_seg, segments_info, self.metadata)
|
|
|
|
if self._instance_mode == ColorMode.IMAGE_BW:
|
|
frame_visualizer.output.reset_image(
|
|
frame_visualizer._create_grayscale_image(pred.non_empty_mask())
|
|
)
|
|
|
|
|
|
for mask, sinfo in pred.semantic_masks():
|
|
category_idx = sinfo["category_id"]
|
|
try:
|
|
mask_color = [x / 255 for x in self.metadata.stuff_colors[category_idx]]
|
|
except AttributeError:
|
|
mask_color = None
|
|
|
|
frame_visualizer.draw_binary_mask(
|
|
mask,
|
|
color=mask_color,
|
|
text=self.metadata.stuff_classes[category_idx],
|
|
alpha=alpha,
|
|
area_threshold=area_threshold,
|
|
)
|
|
|
|
all_instances = list(pred.instance_masks())
|
|
if len(all_instances) == 0:
|
|
return frame_visualizer.output
|
|
|
|
masks, sinfo = list(zip(*all_instances))
|
|
num_instances = len(masks)
|
|
masks_rles = mask_util.encode(
|
|
np.asarray(np.asarray(masks).transpose(1, 2, 0), dtype=np.uint8, order="F")
|
|
)
|
|
assert len(masks_rles) == num_instances
|
|
|
|
category_ids = [x["category_id"] for x in sinfo]
|
|
detected = [
|
|
_DetectedInstance(category_ids[i], bbox=None, mask_rle=masks_rles[i], color=None, ttl=8)
|
|
for i in range(num_instances)
|
|
]
|
|
colors = self._assign_colors(detected)
|
|
labels = [self.metadata.thing_classes[k] for k in category_ids]
|
|
|
|
frame_visualizer.overlay_instances(
|
|
boxes=None,
|
|
masks=masks,
|
|
labels=labels,
|
|
keypoints=None,
|
|
assigned_colors=colors,
|
|
alpha=alpha,
|
|
)
|
|
return frame_visualizer.output
|
|
|
|
def _assign_colors(self, instances):
|
|
"""
|
|
Naive tracking heuristics to assign same color to the same instance,
|
|
will update the internal state of tracked instances.
|
|
|
|
Returns:
|
|
list[tuple[float]]: list of colors.
|
|
"""
|
|
|
|
|
|
is_crowd = np.zeros((len(instances),), dtype=bool)
|
|
if instances[0].bbox is None:
|
|
assert instances[0].mask_rle is not None
|
|
|
|
|
|
rles_old = [x.mask_rle for x in self._old_instances]
|
|
rles_new = [x.mask_rle for x in instances]
|
|
ious = mask_util.iou(rles_old, rles_new, is_crowd)
|
|
threshold = 0.5
|
|
else:
|
|
boxes_old = [x.bbox for x in self._old_instances]
|
|
boxes_new = [x.bbox for x in instances]
|
|
ious = mask_util.iou(boxes_old, boxes_new, is_crowd)
|
|
threshold = 0.6
|
|
if len(ious) == 0:
|
|
ious = np.zeros((len(self._old_instances), len(instances)), dtype="float32")
|
|
|
|
|
|
for old_idx, old in enumerate(self._old_instances):
|
|
for new_idx, new in enumerate(instances):
|
|
if old.label != new.label:
|
|
ious[old_idx, new_idx] = 0
|
|
|
|
matched_new_per_old = np.asarray(ious).argmax(axis=1)
|
|
max_iou_per_old = np.asarray(ious).max(axis=1)
|
|
|
|
|
|
extra_instances = []
|
|
for idx, inst in enumerate(self._old_instances):
|
|
if max_iou_per_old[idx] > threshold:
|
|
newidx = matched_new_per_old[idx]
|
|
if instances[newidx].color is None:
|
|
instances[newidx].color = inst.color
|
|
continue
|
|
|
|
|
|
inst.ttl -= 1
|
|
if inst.ttl > 0:
|
|
extra_instances.append(inst)
|
|
|
|
|
|
for inst in instances:
|
|
if inst.color is None:
|
|
inst.color = random_color(rgb=True, maximum=1)
|
|
self._old_instances = instances[:] + extra_instances
|
|
return [d.color for d in instances]
|
|
|
|
def _assign_colors_by_id(self, instances: Instances) -> List:
|
|
colors = []
|
|
untracked_ids = set(self._assigned_colors.keys())
|
|
for id in instances.ID:
|
|
if id in self._assigned_colors:
|
|
colors.append(self._color_pool[self._assigned_colors[id]])
|
|
untracked_ids.remove(id)
|
|
else:
|
|
assert (
|
|
len(self._color_idx_set) >= 1
|
|
), f"Number of id exceeded maximum, \
|
|
max = {self._max_num_instances}"
|
|
idx = self._color_idx_set.pop()
|
|
color = self._color_pool[idx]
|
|
self._assigned_colors[id] = idx
|
|
colors.append(color)
|
|
for id in untracked_ids:
|
|
self._color_idx_set.add(self._assigned_colors[id])
|
|
del self._assigned_colors[id]
|
|
return colors
|
|
|