|
|
|
import importlib
|
|
import numpy as np
|
|
import os
|
|
import re
|
|
import subprocess
|
|
import sys
|
|
from collections import defaultdict
|
|
import PIL
|
|
import torch
|
|
import torchvision
|
|
from tabulate import tabulate
|
|
|
|
__all__ = ["collect_env_info"]
|
|
|
|
|
|
def collect_torch_env():
|
|
try:
|
|
import torch.__config__
|
|
|
|
return torch.__config__.show()
|
|
except ImportError:
|
|
|
|
from torch.utils.collect_env import get_pretty_env_info
|
|
|
|
return get_pretty_env_info()
|
|
|
|
|
|
def get_env_module():
|
|
var_name = "DETECTRON2_ENV_MODULE"
|
|
return var_name, os.environ.get(var_name, "<not set>")
|
|
|
|
|
|
def detect_compute_compatibility(CUDA_HOME, so_file):
|
|
try:
|
|
cuobjdump = os.path.join(CUDA_HOME, "bin", "cuobjdump")
|
|
if os.path.isfile(cuobjdump):
|
|
output = subprocess.check_output(
|
|
"'{}' --list-elf '{}'".format(cuobjdump, so_file), shell=True
|
|
)
|
|
output = output.decode("utf-8").strip().split("\n")
|
|
arch = []
|
|
for line in output:
|
|
line = re.findall(r"\.sm_([0-9]*)\.", line)[0]
|
|
arch.append(".".join(line))
|
|
arch = sorted(set(arch))
|
|
return ", ".join(arch)
|
|
else:
|
|
return so_file + "; cannot find cuobjdump"
|
|
except Exception:
|
|
|
|
return so_file
|
|
|
|
|
|
def collect_env_info():
|
|
has_gpu = torch.cuda.is_available()
|
|
torch_version = torch.__version__
|
|
|
|
|
|
from torch.utils.cpp_extension import CUDA_HOME, ROCM_HOME
|
|
|
|
has_rocm = False
|
|
if (getattr(torch.version, "hip", None) is not None) and (ROCM_HOME is not None):
|
|
has_rocm = True
|
|
has_cuda = has_gpu and (not has_rocm)
|
|
|
|
data = []
|
|
data.append(("sys.platform", sys.platform))
|
|
data.append(("Python", sys.version.replace("\n", "")))
|
|
data.append(("numpy", np.__version__))
|
|
|
|
try:
|
|
import detectron2
|
|
|
|
data.append(
|
|
(
|
|
"detectron2",
|
|
detectron2.__version__ + " @" + os.path.dirname(detectron2.__file__),
|
|
)
|
|
)
|
|
except ImportError:
|
|
data.append(("detectron2", "failed to import"))
|
|
except AttributeError:
|
|
data.append(("detectron2", "imported a wrong installation"))
|
|
|
|
try:
|
|
import detectron2._C as _C
|
|
except ImportError as e:
|
|
data.append(("detectron2._C", f"not built correctly: {e}"))
|
|
|
|
|
|
if sys.platform != "win32":
|
|
try:
|
|
|
|
cxx = os.environ.get("CXX", "c++")
|
|
cxx = subprocess.check_output("'{}' --version".format(cxx), shell=True)
|
|
cxx = cxx.decode("utf-8").strip().split("\n")[0]
|
|
except subprocess.SubprocessError:
|
|
cxx = "Not found"
|
|
data.append(("Compiler ($CXX)", cxx))
|
|
|
|
if has_cuda and CUDA_HOME is not None:
|
|
try:
|
|
nvcc = os.path.join(CUDA_HOME, "bin", "nvcc")
|
|
nvcc = subprocess.check_output("'{}' -V".format(nvcc), shell=True)
|
|
nvcc = nvcc.decode("utf-8").strip().split("\n")[-1]
|
|
except subprocess.SubprocessError:
|
|
nvcc = "Not found"
|
|
data.append(("CUDA compiler", nvcc))
|
|
if has_cuda and sys.platform != "win32":
|
|
try:
|
|
so_file = importlib.util.find_spec("detectron2._C").origin
|
|
except (ImportError, AttributeError):
|
|
pass
|
|
else:
|
|
data.append(
|
|
(
|
|
"detectron2 arch flags",
|
|
detect_compute_compatibility(CUDA_HOME, so_file),
|
|
)
|
|
)
|
|
else:
|
|
|
|
data.append(("Compiler", _C.get_compiler_version()))
|
|
data.append(("CUDA compiler", _C.get_cuda_version()))
|
|
if has_cuda and getattr(_C, "has_cuda", lambda: True)():
|
|
data.append(
|
|
(
|
|
"detectron2 arch flags",
|
|
detect_compute_compatibility(CUDA_HOME, _C.__file__),
|
|
)
|
|
)
|
|
|
|
data.append(get_env_module())
|
|
data.append(("PyTorch", torch_version + " @" + os.path.dirname(torch.__file__)))
|
|
data.append(("PyTorch debug build", torch.version.debug))
|
|
try:
|
|
data.append(("torch._C._GLIBCXX_USE_CXX11_ABI", torch._C._GLIBCXX_USE_CXX11_ABI))
|
|
except Exception:
|
|
pass
|
|
|
|
if not has_gpu:
|
|
has_gpu_text = "No: torch.cuda.is_available() == False"
|
|
else:
|
|
has_gpu_text = "Yes"
|
|
data.append(("GPU available", has_gpu_text))
|
|
if has_gpu:
|
|
devices = defaultdict(list)
|
|
for k in range(torch.cuda.device_count()):
|
|
cap = ".".join((str(x) for x in torch.cuda.get_device_capability(k)))
|
|
name = torch.cuda.get_device_name(k) + f" (arch={cap})"
|
|
devices[name].append(str(k))
|
|
for name, devids in devices.items():
|
|
data.append(("GPU " + ",".join(devids), name))
|
|
|
|
if has_rocm:
|
|
msg = " - invalid!" if not (ROCM_HOME and os.path.isdir(ROCM_HOME)) else ""
|
|
data.append(("ROCM_HOME", str(ROCM_HOME) + msg))
|
|
else:
|
|
try:
|
|
from torch.utils.collect_env import (
|
|
get_nvidia_driver_version,
|
|
run as _run,
|
|
)
|
|
|
|
data.append(("Driver version", get_nvidia_driver_version(_run)))
|
|
except Exception:
|
|
pass
|
|
msg = " - invalid!" if not (CUDA_HOME and os.path.isdir(CUDA_HOME)) else ""
|
|
data.append(("CUDA_HOME", str(CUDA_HOME) + msg))
|
|
|
|
cuda_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None)
|
|
if cuda_arch_list:
|
|
data.append(("TORCH_CUDA_ARCH_LIST", cuda_arch_list))
|
|
data.append(("Pillow", PIL.__version__))
|
|
|
|
try:
|
|
data.append(
|
|
(
|
|
"torchvision",
|
|
str(torchvision.__version__) + " @" + os.path.dirname(torchvision.__file__),
|
|
)
|
|
)
|
|
if has_cuda:
|
|
try:
|
|
torchvision_C = importlib.util.find_spec("torchvision._C").origin
|
|
msg = detect_compute_compatibility(CUDA_HOME, torchvision_C)
|
|
data.append(("torchvision arch flags", msg))
|
|
except (ImportError, AttributeError):
|
|
data.append(("torchvision._C", "Not found"))
|
|
except AttributeError:
|
|
data.append(("torchvision", "unknown"))
|
|
|
|
try:
|
|
import fvcore
|
|
|
|
data.append(("fvcore", fvcore.__version__))
|
|
except (ImportError, AttributeError):
|
|
pass
|
|
|
|
try:
|
|
import iopath
|
|
|
|
data.append(("iopath", iopath.__version__))
|
|
except (ImportError, AttributeError):
|
|
pass
|
|
|
|
try:
|
|
import cv2
|
|
|
|
data.append(("cv2", cv2.__version__))
|
|
except (ImportError, AttributeError):
|
|
data.append(("cv2", "Not found"))
|
|
env_str = tabulate(data) + "\n"
|
|
env_str += collect_torch_env()
|
|
return env_str
|
|
|
|
|
|
def test_nccl_ops():
|
|
num_gpu = torch.cuda.device_count()
|
|
if os.access("/tmp", os.W_OK):
|
|
import torch.multiprocessing as mp
|
|
|
|
dist_url = "file:///tmp/nccl_tmp_file"
|
|
print("Testing NCCL connectivity ... this should not hang.")
|
|
mp.spawn(_test_nccl_worker, nprocs=num_gpu, args=(num_gpu, dist_url), daemon=False)
|
|
print("NCCL succeeded.")
|
|
|
|
|
|
def _test_nccl_worker(rank, num_gpu, dist_url):
|
|
import torch.distributed as dist
|
|
|
|
dist.init_process_group(backend="NCCL", init_method=dist_url, rank=rank, world_size=num_gpu)
|
|
dist.barrier(device_ids=[rank])
|
|
|
|
|
|
def main() -> None:
|
|
global x
|
|
try:
|
|
from detectron2.utils.collect_env import collect_env_info as f
|
|
|
|
print(f())
|
|
except ImportError:
|
|
print(collect_env_info())
|
|
|
|
if torch.cuda.is_available():
|
|
num_gpu = torch.cuda.device_count()
|
|
for k in range(num_gpu):
|
|
device = f"cuda:{k}"
|
|
try:
|
|
x = torch.tensor([1, 2.0], dtype=torch.float32)
|
|
x = x.to(device)
|
|
except Exception as e:
|
|
print(
|
|
f"Unable to copy tensor to device={device}: {e}. "
|
|
"Your CUDA environment is broken."
|
|
)
|
|
if num_gpu > 1:
|
|
test_nccl_ops()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|