|
|
|
import copy
|
|
import itertools
|
|
import logging
|
|
from collections import defaultdict
|
|
from enum import Enum
|
|
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Type, Union
|
|
import torch
|
|
from fvcore.common.param_scheduler import (
|
|
CosineParamScheduler,
|
|
MultiStepParamScheduler,
|
|
StepWithFixedGammaParamScheduler,
|
|
)
|
|
|
|
from detectron2.config import CfgNode
|
|
from detectron2.utils.env import TORCH_VERSION
|
|
|
|
from .lr_scheduler import LRMultiplier, LRScheduler, WarmupParamScheduler
|
|
|
|
_GradientClipperInput = Union[torch.Tensor, Iterable[torch.Tensor]]
|
|
_GradientClipper = Callable[[_GradientClipperInput], None]
|
|
|
|
|
|
class GradientClipType(Enum):
|
|
VALUE = "value"
|
|
NORM = "norm"
|
|
|
|
|
|
def _create_gradient_clipper(cfg: CfgNode) -> _GradientClipper:
|
|
"""
|
|
Creates gradient clipping closure to clip by value or by norm,
|
|
according to the provided config.
|
|
"""
|
|
cfg = copy.deepcopy(cfg)
|
|
|
|
def clip_grad_norm(p: _GradientClipperInput):
|
|
torch.nn.utils.clip_grad_norm_(p, cfg.CLIP_VALUE, cfg.NORM_TYPE)
|
|
|
|
def clip_grad_value(p: _GradientClipperInput):
|
|
torch.nn.utils.clip_grad_value_(p, cfg.CLIP_VALUE)
|
|
|
|
_GRADIENT_CLIP_TYPE_TO_CLIPPER = {
|
|
GradientClipType.VALUE: clip_grad_value,
|
|
GradientClipType.NORM: clip_grad_norm,
|
|
}
|
|
return _GRADIENT_CLIP_TYPE_TO_CLIPPER[GradientClipType(cfg.CLIP_TYPE)]
|
|
|
|
|
|
def _generate_optimizer_class_with_gradient_clipping(
|
|
optimizer: Type[torch.optim.Optimizer],
|
|
*,
|
|
per_param_clipper: Optional[_GradientClipper] = None,
|
|
global_clipper: Optional[_GradientClipper] = None,
|
|
) -> Type[torch.optim.Optimizer]:
|
|
"""
|
|
Dynamically creates a new type that inherits the type of a given instance
|
|
and overrides the `step` method to add gradient clipping
|
|
"""
|
|
assert (
|
|
per_param_clipper is None or global_clipper is None
|
|
), "Not allowed to use both per-parameter clipping and global clipping"
|
|
|
|
def optimizer_wgc_step(self, closure=None):
|
|
if per_param_clipper is not None:
|
|
for group in self.param_groups:
|
|
for p in group["params"]:
|
|
per_param_clipper(p)
|
|
else:
|
|
|
|
|
|
all_params = itertools.chain(*[g["params"] for g in self.param_groups])
|
|
global_clipper(all_params)
|
|
super(type(self), self).step(closure)
|
|
|
|
OptimizerWithGradientClip = type(
|
|
optimizer.__name__ + "WithGradientClip",
|
|
(optimizer,),
|
|
{"step": optimizer_wgc_step},
|
|
)
|
|
return OptimizerWithGradientClip
|
|
|
|
|
|
def maybe_add_gradient_clipping(
|
|
cfg: CfgNode, optimizer: Type[torch.optim.Optimizer]
|
|
) -> Type[torch.optim.Optimizer]:
|
|
"""
|
|
If gradient clipping is enabled through config options, wraps the existing
|
|
optimizer type to become a new dynamically created class OptimizerWithGradientClip
|
|
that inherits the given optimizer and overrides the `step` method to
|
|
include gradient clipping.
|
|
|
|
Args:
|
|
cfg: CfgNode, configuration options
|
|
optimizer: type. A subclass of torch.optim.Optimizer
|
|
|
|
Return:
|
|
type: either the input `optimizer` (if gradient clipping is disabled), or
|
|
a subclass of it with gradient clipping included in the `step` method.
|
|
"""
|
|
if not cfg.SOLVER.CLIP_GRADIENTS.ENABLED:
|
|
return optimizer
|
|
if isinstance(optimizer, torch.optim.Optimizer):
|
|
optimizer_type = type(optimizer)
|
|
else:
|
|
assert issubclass(optimizer, torch.optim.Optimizer), optimizer
|
|
optimizer_type = optimizer
|
|
|
|
grad_clipper = _create_gradient_clipper(cfg.SOLVER.CLIP_GRADIENTS)
|
|
OptimizerWithGradientClip = _generate_optimizer_class_with_gradient_clipping(
|
|
optimizer_type, per_param_clipper=grad_clipper
|
|
)
|
|
if isinstance(optimizer, torch.optim.Optimizer):
|
|
optimizer.__class__ = OptimizerWithGradientClip
|
|
return optimizer
|
|
else:
|
|
return OptimizerWithGradientClip
|
|
|
|
|
|
def build_optimizer(cfg: CfgNode, model: torch.nn.Module) -> torch.optim.Optimizer:
|
|
"""
|
|
Build an optimizer from config.
|
|
"""
|
|
params = get_default_optimizer_params(
|
|
model,
|
|
base_lr=cfg.SOLVER.BASE_LR,
|
|
weight_decay_norm=cfg.SOLVER.WEIGHT_DECAY_NORM,
|
|
bias_lr_factor=cfg.SOLVER.BIAS_LR_FACTOR,
|
|
weight_decay_bias=cfg.SOLVER.WEIGHT_DECAY_BIAS,
|
|
)
|
|
sgd_args = {
|
|
"params": params,
|
|
"lr": cfg.SOLVER.BASE_LR,
|
|
"momentum": cfg.SOLVER.MOMENTUM,
|
|
"nesterov": cfg.SOLVER.NESTEROV,
|
|
"weight_decay": cfg.SOLVER.WEIGHT_DECAY,
|
|
}
|
|
if TORCH_VERSION >= (1, 12):
|
|
sgd_args["foreach"] = True
|
|
return maybe_add_gradient_clipping(cfg, torch.optim.SGD(**sgd_args))
|
|
|
|
|
|
def get_default_optimizer_params(
|
|
model: torch.nn.Module,
|
|
base_lr: Optional[float] = None,
|
|
weight_decay: Optional[float] = None,
|
|
weight_decay_norm: Optional[float] = None,
|
|
bias_lr_factor: Optional[float] = 1.0,
|
|
weight_decay_bias: Optional[float] = None,
|
|
lr_factor_func: Optional[Callable] = None,
|
|
overrides: Optional[Dict[str, Dict[str, float]]] = None,
|
|
) -> List[Dict[str, Any]]:
|
|
"""
|
|
Get default param list for optimizer, with support for a few types of
|
|
overrides. If no overrides needed, this is equivalent to `model.parameters()`.
|
|
|
|
Args:
|
|
base_lr: lr for every group by default. Can be omitted to use the one in optimizer.
|
|
weight_decay: weight decay for every group by default. Can be omitted to use the one
|
|
in optimizer.
|
|
weight_decay_norm: override weight decay for params in normalization layers
|
|
bias_lr_factor: multiplier of lr for bias parameters.
|
|
weight_decay_bias: override weight decay for bias parameters.
|
|
lr_factor_func: function to calculate lr decay rate by mapping the parameter names to
|
|
corresponding lr decay rate. Note that setting this option requires
|
|
also setting ``base_lr``.
|
|
overrides: if not `None`, provides values for optimizer hyperparameters
|
|
(LR, weight decay) for module parameters with a given name; e.g.
|
|
``{"embedding": {"lr": 0.01, "weight_decay": 0.1}}`` will set the LR and
|
|
weight decay values for all module parameters named `embedding`.
|
|
|
|
For common detection models, ``weight_decay_norm`` is the only option
|
|
needed to be set. ``bias_lr_factor,weight_decay_bias`` are legacy settings
|
|
from Detectron1 that are not found useful.
|
|
|
|
Example:
|
|
::
|
|
torch.optim.SGD(get_default_optimizer_params(model, weight_decay_norm=0),
|
|
lr=0.01, weight_decay=1e-4, momentum=0.9)
|
|
"""
|
|
if overrides is None:
|
|
overrides = {}
|
|
defaults = {}
|
|
if base_lr is not None:
|
|
defaults["lr"] = base_lr
|
|
if weight_decay is not None:
|
|
defaults["weight_decay"] = weight_decay
|
|
bias_overrides = {}
|
|
if bias_lr_factor is not None and bias_lr_factor != 1.0:
|
|
|
|
|
|
if base_lr is None:
|
|
raise ValueError("bias_lr_factor requires base_lr")
|
|
bias_overrides["lr"] = base_lr * bias_lr_factor
|
|
if weight_decay_bias is not None:
|
|
bias_overrides["weight_decay"] = weight_decay_bias
|
|
if len(bias_overrides):
|
|
if "bias" in overrides:
|
|
raise ValueError("Conflicting overrides for 'bias'")
|
|
overrides["bias"] = bias_overrides
|
|
if lr_factor_func is not None:
|
|
if base_lr is None:
|
|
raise ValueError("lr_factor_func requires base_lr")
|
|
norm_module_types = (
|
|
torch.nn.BatchNorm1d,
|
|
torch.nn.BatchNorm2d,
|
|
torch.nn.BatchNorm3d,
|
|
torch.nn.SyncBatchNorm,
|
|
|
|
torch.nn.GroupNorm,
|
|
torch.nn.InstanceNorm1d,
|
|
torch.nn.InstanceNorm2d,
|
|
torch.nn.InstanceNorm3d,
|
|
torch.nn.LayerNorm,
|
|
torch.nn.LocalResponseNorm,
|
|
)
|
|
params: List[Dict[str, Any]] = []
|
|
memo: Set[torch.nn.parameter.Parameter] = set()
|
|
for module_name, module in model.named_modules():
|
|
for module_param_name, value in module.named_parameters(recurse=False):
|
|
if not value.requires_grad:
|
|
continue
|
|
|
|
if value in memo:
|
|
continue
|
|
memo.add(value)
|
|
|
|
hyperparams = copy.copy(defaults)
|
|
if isinstance(module, norm_module_types) and weight_decay_norm is not None:
|
|
hyperparams["weight_decay"] = weight_decay_norm
|
|
if lr_factor_func is not None:
|
|
hyperparams["lr"] *= lr_factor_func(f"{module_name}.{module_param_name}")
|
|
|
|
hyperparams.update(overrides.get(module_param_name, {}))
|
|
params.append({"params": [value], **hyperparams})
|
|
return reduce_param_groups(params)
|
|
|
|
|
|
def _expand_param_groups(params: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
|
|
|
|
|
ret = defaultdict(dict)
|
|
for item in params:
|
|
assert "params" in item
|
|
cur_params = {x: y for x, y in item.items() if x != "params" and x != "param_names"}
|
|
if "param_names" in item:
|
|
for param_name, param in zip(item["param_names"], item["params"]):
|
|
ret[param].update({"param_names": [param_name], "params": [param], **cur_params})
|
|
else:
|
|
for param in item["params"]:
|
|
ret[param].update({"params": [param], **cur_params})
|
|
return list(ret.values())
|
|
|
|
|
|
def reduce_param_groups(params: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
params = _expand_param_groups(params)
|
|
groups = defaultdict(list)
|
|
for item in params:
|
|
cur_params = tuple((x, y) for x, y in item.items() if x != "params" and x != "param_names")
|
|
groups[cur_params].append({"params": item["params"]})
|
|
if "param_names" in item:
|
|
groups[cur_params][-1]["param_names"] = item["param_names"]
|
|
|
|
ret = []
|
|
for param_keys, param_values in groups.items():
|
|
cur = {kv[0]: kv[1] for kv in param_keys}
|
|
cur["params"] = list(
|
|
itertools.chain.from_iterable([params["params"] for params in param_values])
|
|
)
|
|
if len(param_values) > 0 and "param_names" in param_values[0]:
|
|
cur["param_names"] = list(
|
|
itertools.chain.from_iterable([params["param_names"] for params in param_values])
|
|
)
|
|
ret.append(cur)
|
|
return ret
|
|
|
|
|
|
def build_lr_scheduler(cfg: CfgNode, optimizer: torch.optim.Optimizer) -> LRScheduler:
|
|
"""
|
|
Build a LR scheduler from config.
|
|
"""
|
|
name = cfg.SOLVER.LR_SCHEDULER_NAME
|
|
|
|
if name == "WarmupMultiStepLR":
|
|
steps = [x for x in cfg.SOLVER.STEPS if x <= cfg.SOLVER.MAX_ITER]
|
|
if len(steps) != len(cfg.SOLVER.STEPS):
|
|
logger = logging.getLogger(__name__)
|
|
logger.warning(
|
|
"SOLVER.STEPS contains values larger than SOLVER.MAX_ITER. "
|
|
"These values will be ignored."
|
|
)
|
|
sched = MultiStepParamScheduler(
|
|
values=[cfg.SOLVER.GAMMA**k for k in range(len(steps) + 1)],
|
|
milestones=steps,
|
|
num_updates=cfg.SOLVER.MAX_ITER,
|
|
)
|
|
elif name == "WarmupCosineLR":
|
|
end_value = cfg.SOLVER.BASE_LR_END / cfg.SOLVER.BASE_LR
|
|
assert end_value >= 0.0 and end_value <= 1.0, end_value
|
|
sched = CosineParamScheduler(1, end_value)
|
|
elif name == "WarmupStepWithFixedGammaLR":
|
|
sched = StepWithFixedGammaParamScheduler(
|
|
base_value=1.0,
|
|
gamma=cfg.SOLVER.GAMMA,
|
|
num_decays=cfg.SOLVER.NUM_DECAYS,
|
|
num_updates=cfg.SOLVER.MAX_ITER,
|
|
)
|
|
else:
|
|
raise ValueError("Unknown LR scheduler: {}".format(name))
|
|
|
|
sched = WarmupParamScheduler(
|
|
sched,
|
|
cfg.SOLVER.WARMUP_FACTOR,
|
|
min(cfg.SOLVER.WARMUP_ITERS / cfg.SOLVER.MAX_ITER, 1.0),
|
|
cfg.SOLVER.WARMUP_METHOD,
|
|
cfg.SOLVER.RESCALE_INTERVAL,
|
|
)
|
|
return LRMultiplier(optimizer, multiplier=sched, max_iter=cfg.SOLVER.MAX_ITER)
|
|
|