|
import logging
|
|
import math
|
|
import fvcore.nn.weight_init as weight_init
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from detectron2.layers import CNNBlockBase, Conv2d, get_norm
|
|
from detectron2.modeling.backbone.fpn import _assert_strides_are_log2_contiguous
|
|
|
|
from .backbone import Backbone
|
|
from .utils import (
|
|
PatchEmbed,
|
|
add_decomposed_rel_pos,
|
|
get_abs_pos,
|
|
window_partition,
|
|
window_unpartition,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
__all__ = ["ViT", "SimpleFeaturePyramid", "get_vit_lr_decay_rate"]
|
|
|
|
|
|
class Attention(nn.Module):
|
|
"""Multi-head Attention block with relative position embeddings."""
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads=8,
|
|
qkv_bias=True,
|
|
use_rel_pos=False,
|
|
rel_pos_zero_init=True,
|
|
input_size=None,
|
|
):
|
|
"""
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
num_heads (int): Number of attention heads.
|
|
qkv_bias (bool: If True, add a learnable bias to query, key, value.
|
|
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
|
input_size (int or None): Input resolution for calculating the relative positional
|
|
parameter size.
|
|
"""
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = head_dim**-0.5
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
self.use_rel_pos = use_rel_pos
|
|
if self.use_rel_pos:
|
|
|
|
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
|
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
|
|
|
if not rel_pos_zero_init:
|
|
nn.init.trunc_normal_(self.rel_pos_h, std=0.02)
|
|
nn.init.trunc_normal_(self.rel_pos_w, std=0.02)
|
|
|
|
def forward(self, x):
|
|
B, H, W, _ = x.shape
|
|
|
|
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
|
|
|
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
|
|
|
attn = (q * self.scale) @ k.transpose(-2, -1)
|
|
|
|
if self.use_rel_pos:
|
|
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
|
x = self.proj(x)
|
|
|
|
return x
|
|
|
|
|
|
class ResBottleneckBlock(CNNBlockBase):
|
|
"""
|
|
The standard bottleneck residual block without the last activation layer.
|
|
It contains 3 conv layers with kernels 1x1, 3x3, 1x1.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
bottleneck_channels,
|
|
norm="LN",
|
|
act_layer=nn.GELU,
|
|
):
|
|
"""
|
|
Args:
|
|
in_channels (int): Number of input channels.
|
|
out_channels (int): Number of output channels.
|
|
bottleneck_channels (int): number of output channels for the 3x3
|
|
"bottleneck" conv layers.
|
|
norm (str or callable): normalization for all conv layers.
|
|
See :func:`layers.get_norm` for supported format.
|
|
act_layer (callable): activation for all conv layers.
|
|
"""
|
|
super().__init__(in_channels, out_channels, 1)
|
|
|
|
self.conv1 = Conv2d(in_channels, bottleneck_channels, 1, bias=False)
|
|
self.norm1 = get_norm(norm, bottleneck_channels)
|
|
self.act1 = act_layer()
|
|
|
|
self.conv2 = Conv2d(
|
|
bottleneck_channels,
|
|
bottleneck_channels,
|
|
3,
|
|
padding=1,
|
|
bias=False,
|
|
)
|
|
self.norm2 = get_norm(norm, bottleneck_channels)
|
|
self.act2 = act_layer()
|
|
|
|
self.conv3 = Conv2d(bottleneck_channels, out_channels, 1, bias=False)
|
|
self.norm3 = get_norm(norm, out_channels)
|
|
|
|
for layer in [self.conv1, self.conv2, self.conv3]:
|
|
weight_init.c2_msra_fill(layer)
|
|
for layer in [self.norm1, self.norm2]:
|
|
layer.weight.data.fill_(1.0)
|
|
layer.bias.data.zero_()
|
|
|
|
self.norm3.weight.data.zero_()
|
|
self.norm3.bias.data.zero_()
|
|
|
|
def forward(self, x):
|
|
out = x
|
|
for layer in self.children():
|
|
out = layer(out)
|
|
|
|
out = x + out
|
|
return out
|
|
|
|
|
|
class Block(nn.Module):
|
|
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads,
|
|
mlp_ratio=4.0,
|
|
qkv_bias=True,
|
|
drop_path=0.0,
|
|
norm_layer=nn.LayerNorm,
|
|
act_layer=nn.GELU,
|
|
use_rel_pos=False,
|
|
rel_pos_zero_init=True,
|
|
window_size=0,
|
|
use_residual_block=False,
|
|
input_size=None,
|
|
):
|
|
"""
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
num_heads (int): Number of attention heads in each ViT block.
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
|
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
|
drop_path (float): Stochastic depth rate.
|
|
norm_layer (nn.Module): Normalization layer.
|
|
act_layer (nn.Module): Activation layer.
|
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
|
window_size (int): Window size for window attention blocks. If it equals 0, then not
|
|
use window attention.
|
|
use_residual_block (bool): If True, use a residual block after the MLP block.
|
|
input_size (int or None): Input resolution for calculating the relative positional
|
|
parameter size.
|
|
"""
|
|
super().__init__()
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = Attention(
|
|
dim,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
use_rel_pos=use_rel_pos,
|
|
rel_pos_zero_init=rel_pos_zero_init,
|
|
input_size=input_size if window_size == 0 else (window_size, window_size),
|
|
)
|
|
|
|
from timm.models.layers import DropPath, Mlp
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
self.norm2 = norm_layer(dim)
|
|
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer)
|
|
|
|
self.window_size = window_size
|
|
|
|
self.use_residual_block = use_residual_block
|
|
if use_residual_block:
|
|
|
|
self.residual = ResBottleneckBlock(
|
|
in_channels=dim,
|
|
out_channels=dim,
|
|
bottleneck_channels=dim // 2,
|
|
norm="LN",
|
|
act_layer=act_layer,
|
|
)
|
|
|
|
def forward(self, x):
|
|
shortcut = x
|
|
x = self.norm1(x)
|
|
|
|
if self.window_size > 0:
|
|
H, W = x.shape[1], x.shape[2]
|
|
x, pad_hw = window_partition(x, self.window_size)
|
|
|
|
x = self.attn(x)
|
|
|
|
if self.window_size > 0:
|
|
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
|
|
|
x = shortcut + self.drop_path(x)
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
|
|
if self.use_residual_block:
|
|
x = self.residual(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
|
|
|
|
return x
|
|
|
|
|
|
class ViT(Backbone):
|
|
"""
|
|
This module implements Vision Transformer (ViT) backbone in :paper:`vitdet`.
|
|
"Exploring Plain Vision Transformer Backbones for Object Detection",
|
|
https://arxiv.org/abs/2203.16527
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
img_size=1024,
|
|
patch_size=16,
|
|
in_chans=3,
|
|
embed_dim=768,
|
|
depth=12,
|
|
num_heads=12,
|
|
mlp_ratio=4.0,
|
|
qkv_bias=True,
|
|
drop_path_rate=0.0,
|
|
norm_layer=nn.LayerNorm,
|
|
act_layer=nn.GELU,
|
|
use_abs_pos=True,
|
|
use_rel_pos=False,
|
|
rel_pos_zero_init=True,
|
|
window_size=0,
|
|
window_block_indexes=(),
|
|
residual_block_indexes=(),
|
|
use_act_checkpoint=False,
|
|
pretrain_img_size=224,
|
|
pretrain_use_cls_token=True,
|
|
out_feature="last_feat",
|
|
):
|
|
"""
|
|
Args:
|
|
img_size (int): Input image size.
|
|
patch_size (int): Patch size.
|
|
in_chans (int): Number of input image channels.
|
|
embed_dim (int): Patch embedding dimension.
|
|
depth (int): Depth of ViT.
|
|
num_heads (int): Number of attention heads in each ViT block.
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
|
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
|
drop_path_rate (float): Stochastic depth rate.
|
|
norm_layer (nn.Module): Normalization layer.
|
|
act_layer (nn.Module): Activation layer.
|
|
use_abs_pos (bool): If True, use absolute positional embeddings.
|
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
|
window_size (int): Window size for window attention blocks.
|
|
window_block_indexes (list): Indexes for blocks using window attention.
|
|
residual_block_indexes (list): Indexes for blocks using conv propagation.
|
|
use_act_checkpoint (bool): If True, use activation checkpointing.
|
|
pretrain_img_size (int): input image size for pretraining models.
|
|
pretrain_use_cls_token (bool): If True, pretrainig models use class token.
|
|
out_feature (str): name of the feature from the last block.
|
|
"""
|
|
super().__init__()
|
|
self.pretrain_use_cls_token = pretrain_use_cls_token
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
kernel_size=(patch_size, patch_size),
|
|
stride=(patch_size, patch_size),
|
|
in_chans=in_chans,
|
|
embed_dim=embed_dim,
|
|
)
|
|
|
|
if use_abs_pos:
|
|
|
|
num_patches = (pretrain_img_size // patch_size) * (pretrain_img_size // patch_size)
|
|
num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim))
|
|
else:
|
|
self.pos_embed = None
|
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
|
|
|
|
self.blocks = nn.ModuleList()
|
|
for i in range(depth):
|
|
block = Block(
|
|
dim=embed_dim,
|
|
num_heads=num_heads,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
drop_path=dpr[i],
|
|
norm_layer=norm_layer,
|
|
act_layer=act_layer,
|
|
use_rel_pos=use_rel_pos,
|
|
rel_pos_zero_init=rel_pos_zero_init,
|
|
window_size=window_size if i in window_block_indexes else 0,
|
|
use_residual_block=i in residual_block_indexes,
|
|
input_size=(img_size // patch_size, img_size // patch_size),
|
|
)
|
|
if use_act_checkpoint:
|
|
|
|
from fairscale.nn.checkpoint import checkpoint_wrapper
|
|
|
|
block = checkpoint_wrapper(block)
|
|
self.blocks.append(block)
|
|
|
|
self._out_feature_channels = {out_feature: embed_dim}
|
|
self._out_feature_strides = {out_feature: patch_size}
|
|
self._out_features = [out_feature]
|
|
|
|
if self.pos_embed is not None:
|
|
nn.init.trunc_normal_(self.pos_embed, std=0.02)
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
nn.init.trunc_normal_(m.weight, std=0.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
|
def forward(self, x):
|
|
x = self.patch_embed(x)
|
|
if self.pos_embed is not None:
|
|
x = x + get_abs_pos(
|
|
self.pos_embed, self.pretrain_use_cls_token, (x.shape[1], x.shape[2])
|
|
)
|
|
|
|
for blk in self.blocks:
|
|
x = blk(x)
|
|
|
|
outputs = {self._out_features[0]: x.permute(0, 3, 1, 2)}
|
|
return outputs
|
|
|
|
|
|
class SimpleFeaturePyramid(Backbone):
|
|
"""
|
|
This module implements SimpleFeaturePyramid in :paper:`vitdet`.
|
|
It creates pyramid features built on top of the input feature map.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
net,
|
|
in_feature,
|
|
out_channels,
|
|
scale_factors,
|
|
top_block=None,
|
|
norm="LN",
|
|
square_pad=0,
|
|
):
|
|
"""
|
|
Args:
|
|
net (Backbone): module representing the subnetwork backbone.
|
|
Must be a subclass of :class:`Backbone`.
|
|
in_feature (str): names of the input feature maps coming
|
|
from the net.
|
|
out_channels (int): number of channels in the output feature maps.
|
|
scale_factors (list[float]): list of scaling factors to upsample or downsample
|
|
the input features for creating pyramid features.
|
|
top_block (nn.Module or None): if provided, an extra operation will
|
|
be performed on the output of the last (smallest resolution)
|
|
pyramid output, and the result will extend the result list. The top_block
|
|
further downsamples the feature map. It must have an attribute
|
|
"num_levels", meaning the number of extra pyramid levels added by
|
|
this block, and "in_feature", which is a string representing
|
|
its input feature (e.g., p5).
|
|
norm (str): the normalization to use.
|
|
square_pad (int): If > 0, require input images to be padded to specific square size.
|
|
"""
|
|
super(SimpleFeaturePyramid, self).__init__()
|
|
assert isinstance(net, Backbone)
|
|
|
|
self.scale_factors = scale_factors
|
|
|
|
input_shapes = net.output_shape()
|
|
strides = [int(input_shapes[in_feature].stride / scale) for scale in scale_factors]
|
|
_assert_strides_are_log2_contiguous(strides)
|
|
|
|
dim = input_shapes[in_feature].channels
|
|
self.stages = []
|
|
use_bias = norm == ""
|
|
for idx, scale in enumerate(scale_factors):
|
|
out_dim = dim
|
|
if scale == 4.0:
|
|
layers = [
|
|
nn.ConvTranspose2d(dim, dim // 2, kernel_size=2, stride=2),
|
|
get_norm(norm, dim // 2),
|
|
nn.GELU(),
|
|
nn.ConvTranspose2d(dim // 2, dim // 4, kernel_size=2, stride=2),
|
|
]
|
|
out_dim = dim // 4
|
|
elif scale == 2.0:
|
|
layers = [nn.ConvTranspose2d(dim, dim // 2, kernel_size=2, stride=2)]
|
|
out_dim = dim // 2
|
|
elif scale == 1.0:
|
|
layers = []
|
|
elif scale == 0.5:
|
|
layers = [nn.MaxPool2d(kernel_size=2, stride=2)]
|
|
else:
|
|
raise NotImplementedError(f"scale_factor={scale} is not supported yet.")
|
|
|
|
layers.extend(
|
|
[
|
|
Conv2d(
|
|
out_dim,
|
|
out_channels,
|
|
kernel_size=1,
|
|
bias=use_bias,
|
|
norm=get_norm(norm, out_channels),
|
|
),
|
|
Conv2d(
|
|
out_channels,
|
|
out_channels,
|
|
kernel_size=3,
|
|
padding=1,
|
|
bias=use_bias,
|
|
norm=get_norm(norm, out_channels),
|
|
),
|
|
]
|
|
)
|
|
layers = nn.Sequential(*layers)
|
|
|
|
stage = int(math.log2(strides[idx]))
|
|
self.add_module(f"simfp_{stage}", layers)
|
|
self.stages.append(layers)
|
|
|
|
self.net = net
|
|
self.in_feature = in_feature
|
|
self.top_block = top_block
|
|
|
|
self._out_feature_strides = {"p{}".format(int(math.log2(s))): s for s in strides}
|
|
|
|
if self.top_block is not None:
|
|
for s in range(stage, stage + self.top_block.num_levels):
|
|
self._out_feature_strides["p{}".format(s + 1)] = 2 ** (s + 1)
|
|
|
|
self._out_features = list(self._out_feature_strides.keys())
|
|
self._out_feature_channels = {k: out_channels for k in self._out_features}
|
|
self._size_divisibility = strides[-1]
|
|
self._square_pad = square_pad
|
|
|
|
@property
|
|
def padding_constraints(self):
|
|
return {
|
|
"size_divisiblity": self._size_divisibility,
|
|
"square_size": self._square_pad,
|
|
}
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Args:
|
|
x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
|
|
|
|
Returns:
|
|
dict[str->Tensor]:
|
|
mapping from feature map name to pyramid feature map tensor
|
|
in high to low resolution order. Returned feature names follow the FPN
|
|
convention: "p<stage>", where stage has stride = 2 ** stage e.g.,
|
|
["p2", "p3", ..., "p6"].
|
|
"""
|
|
bottom_up_features = self.net(x)
|
|
features = bottom_up_features[self.in_feature]
|
|
results = []
|
|
|
|
for stage in self.stages:
|
|
results.append(stage(features))
|
|
|
|
if self.top_block is not None:
|
|
if self.top_block.in_feature in bottom_up_features:
|
|
top_block_in_feature = bottom_up_features[self.top_block.in_feature]
|
|
else:
|
|
top_block_in_feature = results[self._out_features.index(self.top_block.in_feature)]
|
|
results.extend(self.top_block(top_block_in_feature))
|
|
assert len(self._out_features) == len(results)
|
|
return {f: res for f, res in zip(self._out_features, results)}
|
|
|
|
|
|
def get_vit_lr_decay_rate(name, lr_decay_rate=1.0, num_layers=12):
|
|
"""
|
|
Calculate lr decay rate for different ViT blocks.
|
|
Args:
|
|
name (string): parameter name.
|
|
lr_decay_rate (float): base lr decay rate.
|
|
num_layers (int): number of ViT blocks.
|
|
|
|
Returns:
|
|
lr decay rate for the given parameter.
|
|
"""
|
|
layer_id = num_layers + 1
|
|
if name.startswith("backbone"):
|
|
if ".pos_embed" in name or ".patch_embed" in name:
|
|
layer_id = 0
|
|
elif ".blocks." in name and ".residual." not in name:
|
|
layer_id = int(name[name.find(".blocks.") :].split(".")[2]) + 1
|
|
|
|
return lr_decay_rate ** (num_layers + 1 - layer_id)
|
|
|