|
import logging
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from .backbone import Backbone
|
|
from .utils import (
|
|
PatchEmbed,
|
|
add_decomposed_rel_pos,
|
|
get_abs_pos,
|
|
window_partition,
|
|
window_unpartition,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
__all__ = ["MViT"]
|
|
|
|
|
|
def attention_pool(x, pool, norm=None):
|
|
|
|
x = x.permute(0, 3, 1, 2)
|
|
x = pool(x)
|
|
|
|
x = x.permute(0, 2, 3, 1)
|
|
if norm:
|
|
x = norm(x)
|
|
|
|
return x
|
|
|
|
|
|
class MultiScaleAttention(nn.Module):
|
|
"""Multiscale Multi-head Attention block."""
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
dim_out,
|
|
num_heads,
|
|
qkv_bias=True,
|
|
norm_layer=nn.LayerNorm,
|
|
pool_kernel=(3, 3),
|
|
stride_q=1,
|
|
stride_kv=1,
|
|
residual_pooling=True,
|
|
window_size=0,
|
|
use_rel_pos=False,
|
|
rel_pos_zero_init=True,
|
|
input_size=None,
|
|
):
|
|
"""
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
dim_out (int): Number of output channels.
|
|
num_heads (int): Number of attention heads.
|
|
qkv_bias (bool: If True, add a learnable bias to query, key, value.
|
|
norm_layer (nn.Module): Normalization layer.
|
|
pool_kernel (tuple): kernel size for qkv pooling layers.
|
|
stride_q (int): stride size for q pooling layer.
|
|
stride_kv (int): stride size for kv pooling layer.
|
|
residual_pooling (bool): If true, enable residual pooling.
|
|
use_rel_pos (bool): If True, add relative postional embeddings to the attention map.
|
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
|
input_size (int or None): Input resolution.
|
|
"""
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim_out // num_heads
|
|
self.scale = head_dim**-0.5
|
|
|
|
self.qkv = nn.Linear(dim, dim_out * 3, bias=qkv_bias)
|
|
self.proj = nn.Linear(dim_out, dim_out)
|
|
|
|
|
|
pool_padding = [k // 2 for k in pool_kernel]
|
|
dim_conv = dim_out // num_heads
|
|
self.pool_q = nn.Conv2d(
|
|
dim_conv,
|
|
dim_conv,
|
|
pool_kernel,
|
|
stride=stride_q,
|
|
padding=pool_padding,
|
|
groups=dim_conv,
|
|
bias=False,
|
|
)
|
|
self.norm_q = norm_layer(dim_conv)
|
|
self.pool_k = nn.Conv2d(
|
|
dim_conv,
|
|
dim_conv,
|
|
pool_kernel,
|
|
stride=stride_kv,
|
|
padding=pool_padding,
|
|
groups=dim_conv,
|
|
bias=False,
|
|
)
|
|
self.norm_k = norm_layer(dim_conv)
|
|
self.pool_v = nn.Conv2d(
|
|
dim_conv,
|
|
dim_conv,
|
|
pool_kernel,
|
|
stride=stride_kv,
|
|
padding=pool_padding,
|
|
groups=dim_conv,
|
|
bias=False,
|
|
)
|
|
self.norm_v = norm_layer(dim_conv)
|
|
|
|
self.window_size = window_size
|
|
if window_size:
|
|
self.q_win_size = window_size // stride_q
|
|
self.kv_win_size = window_size // stride_kv
|
|
self.residual_pooling = residual_pooling
|
|
|
|
self.use_rel_pos = use_rel_pos
|
|
if self.use_rel_pos:
|
|
|
|
assert input_size[0] == input_size[1]
|
|
size = input_size[0]
|
|
rel_dim = 2 * max(size // stride_q, size // stride_kv) - 1
|
|
self.rel_pos_h = nn.Parameter(torch.zeros(rel_dim, head_dim))
|
|
self.rel_pos_w = nn.Parameter(torch.zeros(rel_dim, head_dim))
|
|
|
|
if not rel_pos_zero_init:
|
|
nn.init.trunc_normal_(self.rel_pos_h, std=0.02)
|
|
nn.init.trunc_normal_(self.rel_pos_w, std=0.02)
|
|
|
|
def forward(self, x):
|
|
B, H, W, _ = x.shape
|
|
|
|
qkv = self.qkv(x).reshape(B, H, W, 3, self.num_heads, -1).permute(3, 0, 4, 1, 2, 5)
|
|
|
|
q, k, v = qkv.reshape(3, B * self.num_heads, H, W, -1).unbind(0)
|
|
|
|
q = attention_pool(q, self.pool_q, self.norm_q)
|
|
k = attention_pool(k, self.pool_k, self.norm_k)
|
|
v = attention_pool(v, self.pool_v, self.norm_v)
|
|
|
|
ori_q = q
|
|
if self.window_size:
|
|
q, q_hw_pad = window_partition(q, self.q_win_size)
|
|
k, kv_hw_pad = window_partition(k, self.kv_win_size)
|
|
v, _ = window_partition(v, self.kv_win_size)
|
|
q_hw = (self.q_win_size, self.q_win_size)
|
|
kv_hw = (self.kv_win_size, self.kv_win_size)
|
|
else:
|
|
q_hw = q.shape[1:3]
|
|
kv_hw = k.shape[1:3]
|
|
|
|
q = q.view(q.shape[0], np.prod(q_hw), -1)
|
|
k = k.view(k.shape[0], np.prod(kv_hw), -1)
|
|
v = v.view(v.shape[0], np.prod(kv_hw), -1)
|
|
|
|
attn = (q * self.scale) @ k.transpose(-2, -1)
|
|
|
|
if self.use_rel_pos:
|
|
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, q_hw, kv_hw)
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
x = attn @ v
|
|
|
|
x = x.view(x.shape[0], q_hw[0], q_hw[1], -1)
|
|
|
|
if self.window_size:
|
|
x = window_unpartition(x, self.q_win_size, q_hw_pad, ori_q.shape[1:3])
|
|
|
|
if self.residual_pooling:
|
|
x += ori_q
|
|
|
|
H, W = x.shape[1], x.shape[2]
|
|
x = x.view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
|
x = self.proj(x)
|
|
|
|
return x
|
|
|
|
|
|
class MultiScaleBlock(nn.Module):
|
|
"""Multiscale Transformer blocks"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
dim_out,
|
|
num_heads,
|
|
mlp_ratio=4.0,
|
|
qkv_bias=True,
|
|
drop_path=0.0,
|
|
norm_layer=nn.LayerNorm,
|
|
act_layer=nn.GELU,
|
|
qkv_pool_kernel=(3, 3),
|
|
stride_q=1,
|
|
stride_kv=1,
|
|
residual_pooling=True,
|
|
window_size=0,
|
|
use_rel_pos=False,
|
|
rel_pos_zero_init=True,
|
|
input_size=None,
|
|
):
|
|
"""
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
dim_out (int): Number of output channels.
|
|
num_heads (int): Number of attention heads in the MViT block.
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
|
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
|
drop_path (float): Stochastic depth rate.
|
|
norm_layer (nn.Module): Normalization layer.
|
|
act_layer (nn.Module): Activation layer.
|
|
qkv_pool_kernel (tuple): kernel size for qkv pooling layers.
|
|
stride_q (int): stride size for q pooling layer.
|
|
stride_kv (int): stride size for kv pooling layer.
|
|
residual_pooling (bool): If true, enable residual pooling.
|
|
window_size (int): Window size for window attention blocks. If it equals 0, then not
|
|
use window attention.
|
|
use_rel_pos (bool): If True, add relative postional embeddings to the attention map.
|
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
|
input_size (int or None): Input resolution.
|
|
"""
|
|
super().__init__()
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = MultiScaleAttention(
|
|
dim,
|
|
dim_out,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
norm_layer=norm_layer,
|
|
pool_kernel=qkv_pool_kernel,
|
|
stride_q=stride_q,
|
|
stride_kv=stride_kv,
|
|
residual_pooling=residual_pooling,
|
|
window_size=window_size,
|
|
use_rel_pos=use_rel_pos,
|
|
rel_pos_zero_init=rel_pos_zero_init,
|
|
input_size=input_size,
|
|
)
|
|
|
|
from timm.models.layers import DropPath, Mlp
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
self.norm2 = norm_layer(dim_out)
|
|
self.mlp = Mlp(
|
|
in_features=dim_out,
|
|
hidden_features=int(dim_out * mlp_ratio),
|
|
out_features=dim_out,
|
|
act_layer=act_layer,
|
|
)
|
|
|
|
if dim != dim_out:
|
|
self.proj = nn.Linear(dim, dim_out)
|
|
|
|
if stride_q > 1:
|
|
kernel_skip = stride_q + 1
|
|
padding_skip = int(kernel_skip // 2)
|
|
self.pool_skip = nn.MaxPool2d(kernel_skip, stride_q, padding_skip, ceil_mode=False)
|
|
|
|
def forward(self, x):
|
|
x_norm = self.norm1(x)
|
|
x_block = self.attn(x_norm)
|
|
|
|
if hasattr(self, "proj"):
|
|
x = self.proj(x_norm)
|
|
if hasattr(self, "pool_skip"):
|
|
x = attention_pool(x, self.pool_skip)
|
|
|
|
x = x + self.drop_path(x_block)
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
|
|
return x
|
|
|
|
|
|
class MViT(Backbone):
|
|
"""
|
|
This module implements Multiscale Vision Transformer (MViT) backbone in :paper:'mvitv2'.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
img_size=224,
|
|
patch_kernel=(7, 7),
|
|
patch_stride=(4, 4),
|
|
patch_padding=(3, 3),
|
|
in_chans=3,
|
|
embed_dim=96,
|
|
depth=16,
|
|
num_heads=1,
|
|
last_block_indexes=(0, 2, 11, 15),
|
|
qkv_pool_kernel=(3, 3),
|
|
adaptive_kv_stride=4,
|
|
adaptive_window_size=56,
|
|
residual_pooling=True,
|
|
mlp_ratio=4.0,
|
|
qkv_bias=True,
|
|
drop_path_rate=0.0,
|
|
norm_layer=nn.LayerNorm,
|
|
act_layer=nn.GELU,
|
|
use_abs_pos=False,
|
|
use_rel_pos=True,
|
|
rel_pos_zero_init=True,
|
|
use_act_checkpoint=False,
|
|
pretrain_img_size=224,
|
|
pretrain_use_cls_token=True,
|
|
out_features=("scale2", "scale3", "scale4", "scale5"),
|
|
):
|
|
"""
|
|
Args:
|
|
img_size (int): Input image size.
|
|
patch_kernel (tuple): kernel size for patch embedding.
|
|
patch_stride (tuple): stride size for patch embedding.
|
|
patch_padding (tuple): padding size for patch embedding.
|
|
in_chans (int): Number of input image channels.
|
|
embed_dim (int): Patch embedding dimension.
|
|
depth (int): Depth of MViT.
|
|
num_heads (int): Number of base attention heads in each MViT block.
|
|
last_block_indexes (tuple): Block indexes for last blocks in each stage.
|
|
qkv_pool_kernel (tuple): kernel size for qkv pooling layers.
|
|
adaptive_kv_stride (int): adaptive stride size for kv pooling.
|
|
adaptive_window_size (int): adaptive window size for window attention blocks.
|
|
residual_pooling (bool): If true, enable residual pooling.
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
|
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
|
drop_path_rate (float): Stochastic depth rate.
|
|
norm_layer (nn.Module): Normalization layer.
|
|
act_layer (nn.Module): Activation layer.
|
|
use_abs_pos (bool): If True, use absolute positional embeddings.
|
|
use_rel_pos (bool): If True, add relative postional embeddings to the attention map.
|
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
|
window_size (int): Window size for window attention blocks.
|
|
use_act_checkpoint (bool): If True, use activation checkpointing.
|
|
pretrain_img_size (int): input image size for pretraining models.
|
|
pretrain_use_cls_token (bool): If True, pretrainig models use class token.
|
|
out_features (tuple): name of the feature maps from each stage.
|
|
"""
|
|
super().__init__()
|
|
self.pretrain_use_cls_token = pretrain_use_cls_token
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
kernel_size=patch_kernel,
|
|
stride=patch_stride,
|
|
padding=patch_padding,
|
|
in_chans=in_chans,
|
|
embed_dim=embed_dim,
|
|
)
|
|
|
|
if use_abs_pos:
|
|
|
|
num_patches = (pretrain_img_size // patch_stride[0]) * (
|
|
pretrain_img_size // patch_stride[1]
|
|
)
|
|
num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim))
|
|
else:
|
|
self.pos_embed = None
|
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
|
|
dim_out = embed_dim
|
|
stride_kv = adaptive_kv_stride
|
|
window_size = adaptive_window_size
|
|
input_size = (img_size // patch_stride[0], img_size // patch_stride[1])
|
|
stage = 2
|
|
stride = patch_stride[0]
|
|
self._out_feature_strides = {}
|
|
self._out_feature_channels = {}
|
|
self.blocks = nn.ModuleList()
|
|
for i in range(depth):
|
|
|
|
if i == last_block_indexes[1] or i == last_block_indexes[2]:
|
|
stride_kv_ = stride_kv * 2
|
|
else:
|
|
stride_kv_ = stride_kv
|
|
|
|
window_size_ = 0 if i in last_block_indexes[1:] else window_size
|
|
block = MultiScaleBlock(
|
|
dim=embed_dim,
|
|
dim_out=dim_out,
|
|
num_heads=num_heads,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
drop_path=dpr[i],
|
|
norm_layer=norm_layer,
|
|
qkv_pool_kernel=qkv_pool_kernel,
|
|
stride_q=2 if i - 1 in last_block_indexes else 1,
|
|
stride_kv=stride_kv_,
|
|
residual_pooling=residual_pooling,
|
|
window_size=window_size_,
|
|
use_rel_pos=use_rel_pos,
|
|
rel_pos_zero_init=rel_pos_zero_init,
|
|
input_size=input_size,
|
|
)
|
|
if use_act_checkpoint:
|
|
|
|
from fairscale.nn.checkpoint import checkpoint_wrapper
|
|
|
|
block = checkpoint_wrapper(block)
|
|
self.blocks.append(block)
|
|
|
|
embed_dim = dim_out
|
|
if i in last_block_indexes:
|
|
name = f"scale{stage}"
|
|
if name in out_features:
|
|
self._out_feature_channels[name] = dim_out
|
|
self._out_feature_strides[name] = stride
|
|
self.add_module(f"{name}_norm", norm_layer(dim_out))
|
|
|
|
dim_out *= 2
|
|
num_heads *= 2
|
|
stride_kv = max(stride_kv // 2, 1)
|
|
stride *= 2
|
|
stage += 1
|
|
if i - 1 in last_block_indexes:
|
|
window_size = window_size // 2
|
|
input_size = [s // 2 for s in input_size]
|
|
|
|
self._out_features = out_features
|
|
self._last_block_indexes = last_block_indexes
|
|
|
|
if self.pos_embed is not None:
|
|
nn.init.trunc_normal_(self.pos_embed, std=0.02)
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
nn.init.trunc_normal_(m.weight, std=0.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
|
def forward(self, x):
|
|
x = self.patch_embed(x)
|
|
|
|
if self.pos_embed is not None:
|
|
x = x + get_abs_pos(self.pos_embed, self.pretrain_use_cls_token, x.shape[1:3])
|
|
|
|
outputs = {}
|
|
stage = 2
|
|
for i, blk in enumerate(self.blocks):
|
|
x = blk(x)
|
|
if i in self._last_block_indexes:
|
|
name = f"scale{stage}"
|
|
if name in self._out_features:
|
|
x_out = getattr(self, f"{name}_norm")(x)
|
|
outputs[name] = x_out.permute(0, 3, 1, 2)
|
|
stage += 1
|
|
|
|
return outputs
|
|
|