|
from fvcore.common.param_scheduler import MultiStepParamScheduler
|
|
|
|
from detectron2.config import LazyCall as L
|
|
from detectron2.solver import WarmupParamScheduler
|
|
|
|
|
|
def default_X_scheduler(num_X):
|
|
"""
|
|
Returns the config for a default multi-step LR scheduler such as "1x", "3x",
|
|
commonly referred to in papers, where every 1x has the total length of 1440k
|
|
training images (~12 COCO epochs). LR is decayed twice at the end of training
|
|
following the strategy defined in "Rethinking ImageNet Pretraining", Sec 4.
|
|
|
|
Args:
|
|
num_X: a positive real number
|
|
|
|
Returns:
|
|
DictConfig: configs that define the multiplier for LR during training
|
|
"""
|
|
|
|
total_steps_16bs = num_X * 90000
|
|
|
|
if num_X <= 2:
|
|
scheduler = L(MultiStepParamScheduler)(
|
|
values=[1.0, 0.1, 0.01],
|
|
|
|
|
|
milestones=[60000, 80000, 90000],
|
|
)
|
|
else:
|
|
scheduler = L(MultiStepParamScheduler)(
|
|
values=[1.0, 0.1, 0.01],
|
|
milestones=[total_steps_16bs - 60000, total_steps_16bs - 20000, total_steps_16bs],
|
|
)
|
|
return L(WarmupParamScheduler)(
|
|
scheduler=scheduler,
|
|
warmup_length=1000 / total_steps_16bs,
|
|
warmup_method="linear",
|
|
warmup_factor=0.001,
|
|
)
|
|
|
|
|
|
lr_multiplier_1x = default_X_scheduler(1)
|
|
lr_multiplier_2x = default_X_scheduler(2)
|
|
lr_multiplier_3x = default_X_scheduler(3)
|
|
lr_multiplier_6x = default_X_scheduler(6)
|
|
lr_multiplier_9x = default_X_scheduler(9)
|
|
|