|
|
|
import itertools
|
|
import json
|
|
import logging
|
|
import numpy as np
|
|
import os
|
|
from collections import OrderedDict
|
|
from typing import Optional, Union
|
|
import pycocotools.mask as mask_util
|
|
import torch
|
|
from PIL import Image
|
|
|
|
from detectron2.data import DatasetCatalog, MetadataCatalog
|
|
from detectron2.utils.comm import all_gather, is_main_process, synchronize
|
|
from detectron2.utils.file_io import PathManager
|
|
|
|
from .evaluator import DatasetEvaluator
|
|
|
|
_CV2_IMPORTED = True
|
|
try:
|
|
import cv2
|
|
except ImportError:
|
|
|
|
_CV2_IMPORTED = False
|
|
|
|
|
|
def load_image_into_numpy_array(
|
|
filename: str,
|
|
dtype: Optional[Union[np.dtype, str]] = None,
|
|
) -> np.ndarray:
|
|
with PathManager.open(filename, "rb") as f:
|
|
array = np.asarray(Image.open(f), dtype=dtype)
|
|
return array
|
|
|
|
|
|
class SemSegEvaluator(DatasetEvaluator):
|
|
"""
|
|
Evaluate semantic segmentation metrics.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dataset_name,
|
|
distributed=True,
|
|
output_dir=None,
|
|
*,
|
|
sem_seg_loading_fn=load_image_into_numpy_array,
|
|
num_classes=None,
|
|
ignore_label=None,
|
|
):
|
|
"""
|
|
Args:
|
|
dataset_name (str): name of the dataset to be evaluated.
|
|
distributed (bool): if True, will collect results from all ranks for evaluation.
|
|
Otherwise, will evaluate the results in the current process.
|
|
output_dir (str): an output directory to dump results.
|
|
sem_seg_loading_fn: function to read sem seg file and load into numpy array.
|
|
Default provided, but projects can customize.
|
|
num_classes, ignore_label: deprecated argument
|
|
"""
|
|
self._logger = logging.getLogger(__name__)
|
|
if num_classes is not None:
|
|
self._logger.warn(
|
|
"SemSegEvaluator(num_classes) is deprecated! It should be obtained from metadata."
|
|
)
|
|
if ignore_label is not None:
|
|
self._logger.warn(
|
|
"SemSegEvaluator(ignore_label) is deprecated! It should be obtained from metadata."
|
|
)
|
|
self._dataset_name = dataset_name
|
|
self._distributed = distributed
|
|
self._output_dir = output_dir
|
|
|
|
self._cpu_device = torch.device("cpu")
|
|
|
|
self.input_file_to_gt_file = {
|
|
dataset_record["file_name"]: dataset_record["sem_seg_file_name"]
|
|
for dataset_record in DatasetCatalog.get(dataset_name)
|
|
}
|
|
|
|
meta = MetadataCatalog.get(dataset_name)
|
|
|
|
try:
|
|
c2d = meta.stuff_dataset_id_to_contiguous_id
|
|
self._contiguous_id_to_dataset_id = {v: k for k, v in c2d.items()}
|
|
except AttributeError:
|
|
self._contiguous_id_to_dataset_id = None
|
|
self._class_names = meta.stuff_classes
|
|
self.sem_seg_loading_fn = sem_seg_loading_fn
|
|
self._num_classes = len(meta.stuff_classes)
|
|
if num_classes is not None:
|
|
assert self._num_classes == num_classes, f"{self._num_classes} != {num_classes}"
|
|
self._ignore_label = ignore_label if ignore_label is not None else meta.ignore_label
|
|
|
|
|
|
self._compute_boundary_iou = True
|
|
if not _CV2_IMPORTED:
|
|
self._compute_boundary_iou = False
|
|
self._logger.warn(
|
|
"""Boundary IoU calculation requires OpenCV. B-IoU metrics are
|
|
not going to be computed because OpenCV is not available to import."""
|
|
)
|
|
if self._num_classes >= np.iinfo(np.uint8).max:
|
|
self._compute_boundary_iou = False
|
|
self._logger.warn(
|
|
f"""SemSegEvaluator(num_classes) is more than supported value for Boundary IoU
|
|
calculation! B-IoU metrics are not going to be computed. Max allowed value
|
|
(exclusive) for num_classes for calculating Boundary IoU is.
|
|
{np.iinfo(np.uint8).max} The number of classes of dataset {self._dataset_name} is
|
|
{self._num_classes}"""
|
|
)
|
|
|
|
def reset(self):
|
|
self._conf_matrix = np.zeros((self._num_classes + 1, self._num_classes + 1), dtype=np.int64)
|
|
self._b_conf_matrix = np.zeros(
|
|
(self._num_classes + 1, self._num_classes + 1), dtype=np.int64
|
|
)
|
|
self._predictions = []
|
|
|
|
def process(self, inputs, outputs):
|
|
"""
|
|
Args:
|
|
inputs: the inputs to a model.
|
|
It is a list of dicts. Each dict corresponds to an image and
|
|
contains keys like "height", "width", "file_name".
|
|
outputs: the outputs of a model. It is either list of semantic segmentation predictions
|
|
(Tensor [H, W]) or list of dicts with key "sem_seg" that contains semantic
|
|
segmentation prediction in the same format.
|
|
"""
|
|
for input, output in zip(inputs, outputs):
|
|
output = output["sem_seg"].argmax(dim=0).to(self._cpu_device)
|
|
pred = np.array(output, dtype=int)
|
|
gt_filename = self.input_file_to_gt_file[input["file_name"]]
|
|
gt = self.sem_seg_loading_fn(gt_filename, dtype=int)
|
|
|
|
gt[gt == self._ignore_label] = self._num_classes
|
|
|
|
self._conf_matrix += np.bincount(
|
|
(self._num_classes + 1) * pred.reshape(-1) + gt.reshape(-1),
|
|
minlength=self._conf_matrix.size,
|
|
).reshape(self._conf_matrix.shape)
|
|
|
|
if self._compute_boundary_iou:
|
|
b_gt = self._mask_to_boundary(gt.astype(np.uint8))
|
|
b_pred = self._mask_to_boundary(pred.astype(np.uint8))
|
|
|
|
self._b_conf_matrix += np.bincount(
|
|
(self._num_classes + 1) * b_pred.reshape(-1) + b_gt.reshape(-1),
|
|
minlength=self._conf_matrix.size,
|
|
).reshape(self._conf_matrix.shape)
|
|
|
|
self._predictions.extend(self.encode_json_sem_seg(pred, input["file_name"]))
|
|
|
|
def evaluate(self):
|
|
"""
|
|
Evaluates standard semantic segmentation metrics (http://cocodataset.org/#stuff-eval):
|
|
|
|
* Mean intersection-over-union averaged across classes (mIoU)
|
|
* Frequency Weighted IoU (fwIoU)
|
|
* Mean pixel accuracy averaged across classes (mACC)
|
|
* Pixel Accuracy (pACC)
|
|
"""
|
|
if self._distributed:
|
|
synchronize()
|
|
conf_matrix_list = all_gather(self._conf_matrix)
|
|
b_conf_matrix_list = all_gather(self._b_conf_matrix)
|
|
self._predictions = all_gather(self._predictions)
|
|
self._predictions = list(itertools.chain(*self._predictions))
|
|
if not is_main_process():
|
|
return
|
|
|
|
self._conf_matrix = np.zeros_like(self._conf_matrix)
|
|
for conf_matrix in conf_matrix_list:
|
|
self._conf_matrix += conf_matrix
|
|
|
|
self._b_conf_matrix = np.zeros_like(self._b_conf_matrix)
|
|
for b_conf_matrix in b_conf_matrix_list:
|
|
self._b_conf_matrix += b_conf_matrix
|
|
|
|
if self._output_dir:
|
|
PathManager.mkdirs(self._output_dir)
|
|
file_path = os.path.join(self._output_dir, "sem_seg_predictions.json")
|
|
with PathManager.open(file_path, "w") as f:
|
|
f.write(json.dumps(self._predictions))
|
|
|
|
acc = np.full(self._num_classes, np.nan, dtype=float)
|
|
iou = np.full(self._num_classes, np.nan, dtype=float)
|
|
tp = self._conf_matrix.diagonal()[:-1].astype(float)
|
|
pos_gt = np.sum(self._conf_matrix[:-1, :-1], axis=0).astype(float)
|
|
class_weights = pos_gt / np.sum(pos_gt)
|
|
pos_pred = np.sum(self._conf_matrix[:-1, :-1], axis=1).astype(float)
|
|
acc_valid = pos_gt > 0
|
|
acc[acc_valid] = tp[acc_valid] / pos_gt[acc_valid]
|
|
union = pos_gt + pos_pred - tp
|
|
iou_valid = np.logical_and(acc_valid, union > 0)
|
|
iou[iou_valid] = tp[iou_valid] / union[iou_valid]
|
|
macc = np.sum(acc[acc_valid]) / np.sum(acc_valid)
|
|
miou = np.sum(iou[iou_valid]) / np.sum(iou_valid)
|
|
fiou = np.sum(iou[iou_valid] * class_weights[iou_valid])
|
|
pacc = np.sum(tp) / np.sum(pos_gt)
|
|
|
|
if self._compute_boundary_iou:
|
|
b_iou = np.full(self._num_classes, np.nan, dtype=float)
|
|
b_tp = self._b_conf_matrix.diagonal()[:-1].astype(float)
|
|
b_pos_gt = np.sum(self._b_conf_matrix[:-1, :-1], axis=0).astype(float)
|
|
b_pos_pred = np.sum(self._b_conf_matrix[:-1, :-1], axis=1).astype(float)
|
|
b_union = b_pos_gt + b_pos_pred - b_tp
|
|
b_iou_valid = b_union > 0
|
|
b_iou[b_iou_valid] = b_tp[b_iou_valid] / b_union[b_iou_valid]
|
|
|
|
res = {}
|
|
res["mIoU"] = 100 * miou
|
|
res["fwIoU"] = 100 * fiou
|
|
for i, name in enumerate(self._class_names):
|
|
res[f"IoU-{name}"] = 100 * iou[i]
|
|
if self._compute_boundary_iou:
|
|
res[f"BoundaryIoU-{name}"] = 100 * b_iou[i]
|
|
res[f"min(IoU, B-Iou)-{name}"] = 100 * min(iou[i], b_iou[i])
|
|
res["mACC"] = 100 * macc
|
|
res["pACC"] = 100 * pacc
|
|
for i, name in enumerate(self._class_names):
|
|
res[f"ACC-{name}"] = 100 * acc[i]
|
|
|
|
if self._output_dir:
|
|
file_path = os.path.join(self._output_dir, "sem_seg_evaluation.pth")
|
|
with PathManager.open(file_path, "wb") as f:
|
|
torch.save(res, f)
|
|
results = OrderedDict({"sem_seg": res})
|
|
self._logger.info(results)
|
|
return results
|
|
|
|
def encode_json_sem_seg(self, sem_seg, input_file_name):
|
|
"""
|
|
Convert semantic segmentation to COCO stuff format with segments encoded as RLEs.
|
|
See http://cocodataset.org/#format-results
|
|
"""
|
|
json_list = []
|
|
for label in np.unique(sem_seg):
|
|
if self._contiguous_id_to_dataset_id is not None:
|
|
assert (
|
|
label in self._contiguous_id_to_dataset_id
|
|
), "Label {} is not in the metadata info for {}".format(label, self._dataset_name)
|
|
dataset_id = self._contiguous_id_to_dataset_id[label]
|
|
else:
|
|
dataset_id = int(label)
|
|
mask = (sem_seg == label).astype(np.uint8)
|
|
mask_rle = mask_util.encode(np.array(mask[:, :, None], order="F"))[0]
|
|
mask_rle["counts"] = mask_rle["counts"].decode("utf-8")
|
|
json_list.append(
|
|
{"file_name": input_file_name, "category_id": dataset_id, "segmentation": mask_rle}
|
|
)
|
|
return json_list
|
|
|
|
def _mask_to_boundary(self, mask: np.ndarray, dilation_ratio=0.02):
|
|
assert mask.ndim == 2, "mask_to_boundary expects a 2-dimensional image"
|
|
h, w = mask.shape
|
|
diag_len = np.sqrt(h**2 + w**2)
|
|
dilation = max(1, int(round(dilation_ratio * diag_len)))
|
|
kernel = np.ones((3, 3), dtype=np.uint8)
|
|
|
|
padded_mask = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0)
|
|
eroded_mask_with_padding = cv2.erode(padded_mask, kernel, iterations=dilation)
|
|
eroded_mask = eroded_mask_with_padding[1:-1, 1:-1]
|
|
boundary = mask - eroded_mask
|
|
return boundary
|
|
|