|
|
|
import itertools
|
|
import json
|
|
import numpy as np
|
|
import os
|
|
import torch
|
|
from pycocotools.cocoeval import COCOeval, maskUtils
|
|
|
|
from detectron2.structures import BoxMode, RotatedBoxes, pairwise_iou_rotated
|
|
from detectron2.utils.file_io import PathManager
|
|
|
|
from .coco_evaluation import COCOEvaluator
|
|
|
|
|
|
class RotatedCOCOeval(COCOeval):
|
|
@staticmethod
|
|
def is_rotated(box_list):
|
|
if type(box_list) is np.ndarray:
|
|
return box_list.shape[1] == 5
|
|
elif type(box_list) is list:
|
|
if box_list == []:
|
|
return False
|
|
return np.all(
|
|
np.array(
|
|
[
|
|
(len(obj) == 5) and ((type(obj) is list) or (type(obj) is np.ndarray))
|
|
for obj in box_list
|
|
]
|
|
)
|
|
)
|
|
return False
|
|
|
|
@staticmethod
|
|
def boxlist_to_tensor(boxlist, output_box_dim):
|
|
if type(boxlist) is np.ndarray:
|
|
box_tensor = torch.from_numpy(boxlist)
|
|
elif type(boxlist) is list:
|
|
if boxlist == []:
|
|
return torch.zeros((0, output_box_dim), dtype=torch.float32)
|
|
else:
|
|
box_tensor = torch.FloatTensor(boxlist)
|
|
else:
|
|
raise Exception("Unrecognized boxlist type")
|
|
|
|
input_box_dim = box_tensor.shape[1]
|
|
if input_box_dim != output_box_dim:
|
|
if input_box_dim == 4 and output_box_dim == 5:
|
|
box_tensor = BoxMode.convert(box_tensor, BoxMode.XYWH_ABS, BoxMode.XYWHA_ABS)
|
|
else:
|
|
raise Exception(
|
|
"Unable to convert from {}-dim box to {}-dim box".format(
|
|
input_box_dim, output_box_dim
|
|
)
|
|
)
|
|
return box_tensor
|
|
|
|
def compute_iou_dt_gt(self, dt, gt, is_crowd):
|
|
if self.is_rotated(dt) or self.is_rotated(gt):
|
|
|
|
assert all(c == 0 for c in is_crowd)
|
|
dt = RotatedBoxes(self.boxlist_to_tensor(dt, output_box_dim=5))
|
|
gt = RotatedBoxes(self.boxlist_to_tensor(gt, output_box_dim=5))
|
|
return pairwise_iou_rotated(dt, gt)
|
|
else:
|
|
|
|
return maskUtils.iou(dt, gt, is_crowd)
|
|
|
|
def computeIoU(self, imgId: int, catId: int):
|
|
p = self.params
|
|
if p.useCats:
|
|
gt = self._gts[imgId, catId]
|
|
dt = self._dts[imgId, catId]
|
|
else:
|
|
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
|
|
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
|
|
|
|
if len(gt) == 0 or len(dt) == 0:
|
|
return []
|
|
|
|
inds = np.argsort([-d["score"] for d in dt], kind="mergesort")
|
|
dt = [dt[i] for i in inds]
|
|
if len(dt) > p.maxDets[-1]:
|
|
dt = dt[0 : p.maxDets[-1]]
|
|
|
|
assert p.iouType == "bbox", "unsupported iouType for iou computation"
|
|
|
|
g = [g["bbox"] for g in gt]
|
|
d = [d["bbox"] for d in dt]
|
|
|
|
|
|
iscrowd = [int(o["iscrowd"]) for o in gt]
|
|
|
|
|
|
|
|
ious = self.compute_iou_dt_gt(d, g, iscrowd)
|
|
return ious
|
|
|
|
|
|
class RotatedCOCOEvaluator(COCOEvaluator):
|
|
"""
|
|
Evaluate object proposal/instance detection outputs using COCO-like metrics and APIs,
|
|
with rotated boxes support.
|
|
Note: this uses IOU only and does not consider angle differences.
|
|
"""
|
|
|
|
def process(self, inputs, outputs):
|
|
"""
|
|
Args:
|
|
inputs: the inputs to a COCO model (e.g., GeneralizedRCNN).
|
|
It is a list of dict. Each dict corresponds to an image and
|
|
contains keys like "height", "width", "file_name", "image_id".
|
|
outputs: the outputs of a COCO model. It is a list of dicts with key
|
|
"instances" that contains :class:`Instances`.
|
|
"""
|
|
for input, output in zip(inputs, outputs):
|
|
prediction = {"image_id": input["image_id"]}
|
|
|
|
if "instances" in output:
|
|
instances = output["instances"].to(self._cpu_device)
|
|
|
|
prediction["instances"] = self.instances_to_json(instances, input["image_id"])
|
|
if "proposals" in output:
|
|
prediction["proposals"] = output["proposals"].to(self._cpu_device)
|
|
self._predictions.append(prediction)
|
|
|
|
def instances_to_json(self, instances, img_id):
|
|
num_instance = len(instances)
|
|
if num_instance == 0:
|
|
return []
|
|
|
|
boxes = instances.pred_boxes.tensor.numpy()
|
|
if boxes.shape[1] == 4:
|
|
boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
|
|
boxes = boxes.tolist()
|
|
scores = instances.scores.tolist()
|
|
classes = instances.pred_classes.tolist()
|
|
|
|
results = []
|
|
for k in range(num_instance):
|
|
result = {
|
|
"image_id": img_id,
|
|
"category_id": classes[k],
|
|
"bbox": boxes[k],
|
|
"score": scores[k],
|
|
}
|
|
|
|
results.append(result)
|
|
return results
|
|
|
|
def _eval_predictions(self, predictions, img_ids=None):
|
|
"""
|
|
Evaluate predictions on the given tasks.
|
|
Fill self._results with the metrics of the tasks.
|
|
"""
|
|
self._logger.info("Preparing results for COCO format ...")
|
|
coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))
|
|
|
|
|
|
if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"):
|
|
reverse_id_mapping = {
|
|
v: k for k, v in self._metadata.thing_dataset_id_to_contiguous_id.items()
|
|
}
|
|
for result in coco_results:
|
|
result["category_id"] = reverse_id_mapping[result["category_id"]]
|
|
|
|
if self._output_dir:
|
|
file_path = os.path.join(self._output_dir, "coco_instances_results.json")
|
|
self._logger.info("Saving results to {}".format(file_path))
|
|
with PathManager.open(file_path, "w") as f:
|
|
f.write(json.dumps(coco_results))
|
|
f.flush()
|
|
|
|
if not self._do_evaluation:
|
|
self._logger.info("Annotations are not available for evaluation.")
|
|
return
|
|
|
|
self._logger.info("Evaluating predictions ...")
|
|
|
|
assert self._tasks is None or set(self._tasks) == {
|
|
"bbox"
|
|
}, "[RotatedCOCOEvaluator] Only bbox evaluation is supported"
|
|
coco_eval = (
|
|
self._evaluate_predictions_on_coco(self._coco_api, coco_results)
|
|
if len(coco_results) > 0
|
|
else None
|
|
)
|
|
|
|
task = "bbox"
|
|
res = self._derive_coco_results(
|
|
coco_eval, task, class_names=self._metadata.get("thing_classes")
|
|
)
|
|
self._results[task] = res
|
|
|
|
def _evaluate_predictions_on_coco(self, coco_gt, coco_results):
|
|
"""
|
|
Evaluate the coco results using COCOEval API.
|
|
"""
|
|
assert len(coco_results) > 0
|
|
|
|
coco_dt = coco_gt.loadRes(coco_results)
|
|
|
|
|
|
coco_eval = RotatedCOCOeval(coco_gt, coco_dt, iouType="bbox")
|
|
|
|
coco_eval.evaluate()
|
|
coco_eval.accumulate()
|
|
coco_eval.summarize()
|
|
|
|
return coco_eval
|
|
|