|
|
|
import copy
|
|
import logging
|
|
import numpy as np
|
|
import time
|
|
from pycocotools.cocoeval import COCOeval
|
|
|
|
from detectron2 import _C
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class COCOeval_opt(COCOeval):
|
|
"""
|
|
This is a slightly modified version of the original COCO API, where the functions evaluateImg()
|
|
and accumulate() are implemented in C++ to speedup evaluation
|
|
"""
|
|
|
|
def evaluate(self):
|
|
"""
|
|
Run per image evaluation on given images and store results in self.evalImgs_cpp, a
|
|
datastructure that isn't readable from Python but is used by a c++ implementation of
|
|
accumulate(). Unlike the original COCO PythonAPI, we don't populate the datastructure
|
|
self.evalImgs because this datastructure is a computational bottleneck.
|
|
:return: None
|
|
"""
|
|
tic = time.time()
|
|
|
|
p = self.params
|
|
|
|
if p.useSegm is not None:
|
|
p.iouType = "segm" if p.useSegm == 1 else "bbox"
|
|
logger.info("Evaluate annotation type *{}*".format(p.iouType))
|
|
p.imgIds = list(np.unique(p.imgIds))
|
|
if p.useCats:
|
|
p.catIds = list(np.unique(p.catIds))
|
|
p.maxDets = sorted(p.maxDets)
|
|
self.params = p
|
|
|
|
self._prepare()
|
|
|
|
|
|
catIds = p.catIds if p.useCats else [-1]
|
|
|
|
if p.iouType == "segm" or p.iouType == "bbox":
|
|
computeIoU = self.computeIoU
|
|
elif p.iouType == "keypoints":
|
|
computeIoU = self.computeOks
|
|
self.ious = {
|
|
(imgId, catId): computeIoU(imgId, catId) for imgId in p.imgIds for catId in catIds
|
|
}
|
|
|
|
maxDet = p.maxDets[-1]
|
|
|
|
|
|
def convert_instances_to_cpp(instances, is_det=False):
|
|
|
|
|
|
instances_cpp = []
|
|
for instance in instances:
|
|
instance_cpp = _C.InstanceAnnotation(
|
|
int(instance["id"]),
|
|
instance["score"] if is_det else instance.get("score", 0.0),
|
|
instance["area"],
|
|
bool(instance.get("iscrowd", 0)),
|
|
bool(instance.get("ignore", 0)),
|
|
)
|
|
instances_cpp.append(instance_cpp)
|
|
return instances_cpp
|
|
|
|
|
|
ground_truth_instances = [
|
|
[convert_instances_to_cpp(self._gts[imgId, catId]) for catId in p.catIds]
|
|
for imgId in p.imgIds
|
|
]
|
|
detected_instances = [
|
|
[convert_instances_to_cpp(self._dts[imgId, catId], is_det=True) for catId in p.catIds]
|
|
for imgId in p.imgIds
|
|
]
|
|
ious = [[self.ious[imgId, catId] for catId in catIds] for imgId in p.imgIds]
|
|
|
|
if not p.useCats:
|
|
|
|
ground_truth_instances = [[[o for c in i for o in c]] for i in ground_truth_instances]
|
|
detected_instances = [[[o for c in i for o in c]] for i in detected_instances]
|
|
|
|
|
|
self._evalImgs_cpp = _C.COCOevalEvaluateImages(
|
|
p.areaRng, maxDet, p.iouThrs, ious, ground_truth_instances, detected_instances
|
|
)
|
|
self._evalImgs = None
|
|
|
|
self._paramsEval = copy.deepcopy(self.params)
|
|
toc = time.time()
|
|
logger.info("COCOeval_opt.evaluate() finished in {:0.2f} seconds.".format(toc - tic))
|
|
|
|
|
|
def accumulate(self):
|
|
"""
|
|
Accumulate per image evaluation results and store the result in self.eval. Does not
|
|
support changing parameter settings from those used by self.evaluate()
|
|
"""
|
|
logger.info("Accumulating evaluation results...")
|
|
tic = time.time()
|
|
assert hasattr(
|
|
self, "_evalImgs_cpp"
|
|
), "evaluate() must be called before accmulate() is called."
|
|
|
|
self.eval = _C.COCOevalAccumulate(self._paramsEval, self._evalImgs_cpp)
|
|
|
|
|
|
self.eval["recall"] = np.array(self.eval["recall"]).reshape(
|
|
self.eval["counts"][:1] + self.eval["counts"][2:]
|
|
)
|
|
|
|
|
|
|
|
self.eval["precision"] = np.array(self.eval["precision"]).reshape(self.eval["counts"])
|
|
self.eval["scores"] = np.array(self.eval["scores"]).reshape(self.eval["counts"])
|
|
toc = time.time()
|
|
logger.info("COCOeval_opt.accumulate() finished in {:0.2f} seconds.".format(toc - tic))
|
|
|