|
|
|
import contextlib
|
|
import copy
|
|
import io
|
|
import itertools
|
|
import json
|
|
import logging
|
|
import numpy as np
|
|
import os
|
|
import pickle
|
|
from collections import OrderedDict
|
|
import pycocotools.mask as mask_util
|
|
import torch
|
|
from pycocotools.coco import COCO
|
|
from pycocotools.cocoeval import COCOeval
|
|
from tabulate import tabulate
|
|
|
|
import detectron2.utils.comm as comm
|
|
from detectron2.config import CfgNode
|
|
from detectron2.data import MetadataCatalog
|
|
from detectron2.data.datasets.coco import convert_to_coco_json
|
|
from detectron2.structures import Boxes, BoxMode, pairwise_iou
|
|
from detectron2.utils.file_io import PathManager
|
|
from detectron2.utils.logger import create_small_table
|
|
|
|
from .evaluator import DatasetEvaluator
|
|
|
|
try:
|
|
from detectron2.evaluation.fast_eval_api import COCOeval_opt
|
|
except ImportError:
|
|
COCOeval_opt = COCOeval
|
|
|
|
|
|
class COCOEvaluator(DatasetEvaluator):
|
|
"""
|
|
Evaluate AR for object proposals, AP for instance detection/segmentation, AP
|
|
for keypoint detection outputs using COCO's metrics.
|
|
See http://cocodataset.org/#detection-eval and
|
|
http://cocodataset.org/#keypoints-eval to understand its metrics.
|
|
The metrics range from 0 to 100 (instead of 0 to 1), where a -1 or NaN means
|
|
the metric cannot be computed (e.g. due to no predictions made).
|
|
|
|
In addition to COCO, this evaluator is able to support any bounding box detection,
|
|
instance segmentation, or keypoint detection dataset.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dataset_name,
|
|
tasks=None,
|
|
distributed=True,
|
|
output_dir=None,
|
|
*,
|
|
max_dets_per_image=None,
|
|
use_fast_impl=True,
|
|
kpt_oks_sigmas=(),
|
|
allow_cached_coco=True,
|
|
):
|
|
"""
|
|
Args:
|
|
dataset_name (str): name of the dataset to be evaluated.
|
|
It must have either the following corresponding metadata:
|
|
|
|
"json_file": the path to the COCO format annotation
|
|
|
|
Or it must be in detectron2's standard dataset format
|
|
so it can be converted to COCO format automatically.
|
|
tasks (tuple[str]): tasks that can be evaluated under the given
|
|
configuration. A task is one of "bbox", "segm", "keypoints".
|
|
By default, will infer this automatically from predictions.
|
|
distributed (True): if True, will collect results from all ranks and run evaluation
|
|
in the main process.
|
|
Otherwise, will only evaluate the results in the current process.
|
|
output_dir (str): optional, an output directory to dump all
|
|
results predicted on the dataset. The dump contains two files:
|
|
|
|
1. "instances_predictions.pth" a file that can be loaded with `torch.load` and
|
|
contains all the results in the format they are produced by the model.
|
|
2. "coco_instances_results.json" a json file in COCO's result format.
|
|
max_dets_per_image (int): limit on the maximum number of detections per image.
|
|
By default in COCO, this limit is to 100, but this can be customized
|
|
to be greater, as is needed in evaluation metrics AP fixed and AP pool
|
|
(see https://arxiv.org/pdf/2102.01066.pdf)
|
|
This doesn't affect keypoint evaluation.
|
|
use_fast_impl (bool): use a fast but **unofficial** implementation to compute AP.
|
|
Although the results should be very close to the official implementation in COCO
|
|
API, it is still recommended to compute results with the official API for use in
|
|
papers. The faster implementation also uses more RAM.
|
|
kpt_oks_sigmas (list[float]): The sigmas used to calculate keypoint OKS.
|
|
See http://cocodataset.org/#keypoints-eval
|
|
When empty, it will use the defaults in COCO.
|
|
Otherwise it should be the same length as ROI_KEYPOINT_HEAD.NUM_KEYPOINTS.
|
|
allow_cached_coco (bool): Whether to use cached coco json from previous validation
|
|
runs. You should set this to False if you need to use different validation data.
|
|
Defaults to True.
|
|
"""
|
|
self._logger = logging.getLogger(__name__)
|
|
self._distributed = distributed
|
|
self._output_dir = output_dir
|
|
|
|
if use_fast_impl and (COCOeval_opt is COCOeval):
|
|
self._logger.info("Fast COCO eval is not built. Falling back to official COCO eval.")
|
|
use_fast_impl = False
|
|
self._use_fast_impl = use_fast_impl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if max_dets_per_image is None:
|
|
max_dets_per_image = [1, 10, 100]
|
|
else:
|
|
max_dets_per_image = [1, 10, max_dets_per_image]
|
|
self._max_dets_per_image = max_dets_per_image
|
|
|
|
if tasks is not None and isinstance(tasks, CfgNode):
|
|
kpt_oks_sigmas = (
|
|
tasks.TEST.KEYPOINT_OKS_SIGMAS if not kpt_oks_sigmas else kpt_oks_sigmas
|
|
)
|
|
self._logger.warn(
|
|
"COCO Evaluator instantiated using config, this is deprecated behavior."
|
|
" Please pass in explicit arguments instead."
|
|
)
|
|
self._tasks = None
|
|
else:
|
|
self._tasks = tasks
|
|
|
|
self._cpu_device = torch.device("cpu")
|
|
|
|
self._metadata = MetadataCatalog.get(dataset_name)
|
|
if not hasattr(self._metadata, "json_file"):
|
|
if output_dir is None:
|
|
raise ValueError(
|
|
"output_dir must be provided to COCOEvaluator "
|
|
"for datasets not in COCO format."
|
|
)
|
|
self._logger.info(f"Trying to convert '{dataset_name}' to COCO format ...")
|
|
|
|
cache_path = os.path.join(output_dir, f"{dataset_name}_coco_format.json")
|
|
self._metadata.json_file = cache_path
|
|
convert_to_coco_json(dataset_name, cache_path, allow_cached=allow_cached_coco)
|
|
|
|
json_file = PathManager.get_local_path(self._metadata.json_file)
|
|
with contextlib.redirect_stdout(io.StringIO()):
|
|
self._coco_api = COCO(json_file)
|
|
|
|
|
|
|
|
self._do_evaluation = "annotations" in self._coco_api.dataset
|
|
if self._do_evaluation:
|
|
self._kpt_oks_sigmas = kpt_oks_sigmas
|
|
|
|
def reset(self):
|
|
self._predictions = []
|
|
|
|
def process(self, inputs, outputs):
|
|
"""
|
|
Args:
|
|
inputs: the inputs to a COCO model (e.g., GeneralizedRCNN).
|
|
It is a list of dict. Each dict corresponds to an image and
|
|
contains keys like "height", "width", "file_name", "image_id".
|
|
outputs: the outputs of a COCO model. It is a list of dicts with key
|
|
"instances" that contains :class:`Instances`.
|
|
"""
|
|
for input, output in zip(inputs, outputs):
|
|
prediction = {"image_id": input["image_id"]}
|
|
|
|
if "instances" in output:
|
|
instances = output["instances"].to(self._cpu_device)
|
|
prediction["instances"] = instances_to_coco_json(instances, input["image_id"])
|
|
if "proposals" in output:
|
|
prediction["proposals"] = output["proposals"].to(self._cpu_device)
|
|
if len(prediction) > 1:
|
|
self._predictions.append(prediction)
|
|
|
|
def evaluate(self, img_ids=None):
|
|
"""
|
|
Args:
|
|
img_ids: a list of image IDs to evaluate on. Default to None for the whole dataset
|
|
"""
|
|
if self._distributed:
|
|
comm.synchronize()
|
|
predictions = comm.gather(self._predictions, dst=0)
|
|
predictions = list(itertools.chain(*predictions))
|
|
|
|
if not comm.is_main_process():
|
|
return {}
|
|
else:
|
|
predictions = self._predictions
|
|
|
|
if len(predictions) == 0:
|
|
self._logger.warning("[COCOEvaluator] Did not receive valid predictions.")
|
|
return {}
|
|
|
|
if self._output_dir:
|
|
PathManager.mkdirs(self._output_dir)
|
|
file_path = os.path.join(self._output_dir, "instances_predictions.pth")
|
|
with PathManager.open(file_path, "wb") as f:
|
|
torch.save(predictions, f)
|
|
|
|
self._results = OrderedDict()
|
|
if "proposals" in predictions[0]:
|
|
self._eval_box_proposals(predictions)
|
|
if "instances" in predictions[0]:
|
|
self._eval_predictions(predictions, img_ids=img_ids)
|
|
|
|
return copy.deepcopy(self._results)
|
|
|
|
def _tasks_from_predictions(self, predictions):
|
|
"""
|
|
Get COCO API "tasks" (i.e. iou_type) from COCO-format predictions.
|
|
"""
|
|
tasks = {"bbox"}
|
|
for pred in predictions:
|
|
if "segmentation" in pred:
|
|
tasks.add("segm")
|
|
if "keypoints" in pred:
|
|
tasks.add("keypoints")
|
|
return sorted(tasks)
|
|
|
|
def _eval_predictions(self, predictions, img_ids=None):
|
|
"""
|
|
Evaluate predictions. Fill self._results with the metrics of the tasks.
|
|
"""
|
|
self._logger.info("Preparing results for COCO format ...")
|
|
coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))
|
|
tasks = self._tasks or self._tasks_from_predictions(coco_results)
|
|
|
|
|
|
if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"):
|
|
dataset_id_to_contiguous_id = self._metadata.thing_dataset_id_to_contiguous_id
|
|
all_contiguous_ids = list(dataset_id_to_contiguous_id.values())
|
|
num_classes = len(all_contiguous_ids)
|
|
assert min(all_contiguous_ids) == 0 and max(all_contiguous_ids) == num_classes - 1
|
|
|
|
reverse_id_mapping = {v: k for k, v in dataset_id_to_contiguous_id.items()}
|
|
for result in coco_results:
|
|
category_id = result["category_id"]
|
|
assert category_id < num_classes, (
|
|
f"A prediction has class={category_id}, "
|
|
f"but the dataset only has {num_classes} classes and "
|
|
f"predicted class id should be in [0, {num_classes - 1}]."
|
|
)
|
|
result["category_id"] = reverse_id_mapping[category_id]
|
|
|
|
if self._output_dir:
|
|
file_path = os.path.join(self._output_dir, "coco_instances_results.json")
|
|
self._logger.info("Saving results to {}".format(file_path))
|
|
with PathManager.open(file_path, "w") as f:
|
|
f.write(json.dumps(coco_results))
|
|
f.flush()
|
|
|
|
if not self._do_evaluation:
|
|
self._logger.info("Annotations are not available for evaluation.")
|
|
return
|
|
|
|
self._logger.info(
|
|
"Evaluating predictions with {} COCO API...".format(
|
|
"unofficial" if self._use_fast_impl else "official"
|
|
)
|
|
)
|
|
for task in sorted(tasks):
|
|
assert task in {"bbox", "segm", "keypoints"}, f"Got unknown task: {task}!"
|
|
coco_eval = (
|
|
_evaluate_predictions_on_coco(
|
|
self._coco_api,
|
|
coco_results,
|
|
task,
|
|
kpt_oks_sigmas=self._kpt_oks_sigmas,
|
|
cocoeval_fn=COCOeval_opt if self._use_fast_impl else COCOeval,
|
|
img_ids=img_ids,
|
|
max_dets_per_image=self._max_dets_per_image,
|
|
)
|
|
if len(coco_results) > 0
|
|
else None
|
|
)
|
|
|
|
res = self._derive_coco_results(
|
|
coco_eval, task, class_names=self._metadata.get("thing_classes")
|
|
)
|
|
self._results[task] = res
|
|
|
|
def _eval_box_proposals(self, predictions):
|
|
"""
|
|
Evaluate the box proposals in predictions.
|
|
Fill self._results with the metrics for "box_proposals" task.
|
|
"""
|
|
if self._output_dir:
|
|
|
|
|
|
bbox_mode = BoxMode.XYXY_ABS.value
|
|
ids, boxes, objectness_logits = [], [], []
|
|
for prediction in predictions:
|
|
ids.append(prediction["image_id"])
|
|
boxes.append(prediction["proposals"].proposal_boxes.tensor.numpy())
|
|
objectness_logits.append(prediction["proposals"].objectness_logits.numpy())
|
|
|
|
proposal_data = {
|
|
"boxes": boxes,
|
|
"objectness_logits": objectness_logits,
|
|
"ids": ids,
|
|
"bbox_mode": bbox_mode,
|
|
}
|
|
with PathManager.open(os.path.join(self._output_dir, "box_proposals.pkl"), "wb") as f:
|
|
pickle.dump(proposal_data, f)
|
|
|
|
if not self._do_evaluation:
|
|
self._logger.info("Annotations are not available for evaluation.")
|
|
return
|
|
|
|
self._logger.info("Evaluating bbox proposals ...")
|
|
res = {}
|
|
areas = {"all": "", "small": "s", "medium": "m", "large": "l"}
|
|
for limit in [100, 1000]:
|
|
for area, suffix in areas.items():
|
|
stats = _evaluate_box_proposals(predictions, self._coco_api, area=area, limit=limit)
|
|
key = "AR{}@{:d}".format(suffix, limit)
|
|
res[key] = float(stats["ar"].item() * 100)
|
|
self._logger.info("Proposal metrics: \n" + create_small_table(res))
|
|
self._results["box_proposals"] = res
|
|
|
|
def _derive_coco_results(self, coco_eval, iou_type, class_names=None):
|
|
"""
|
|
Derive the desired score numbers from summarized COCOeval.
|
|
|
|
Args:
|
|
coco_eval (None or COCOEval): None represents no predictions from model.
|
|
iou_type (str):
|
|
class_names (None or list[str]): if provided, will use it to predict
|
|
per-category AP.
|
|
|
|
Returns:
|
|
a dict of {metric name: score}
|
|
"""
|
|
|
|
metrics = {
|
|
"bbox": ["AP", "AP50", "AP75", "APs", "APm", "APl"],
|
|
"segm": ["AP", "AP50", "AP75", "APs", "APm", "APl"],
|
|
"keypoints": ["AP", "AP50", "AP75", "APm", "APl"],
|
|
}[iou_type]
|
|
|
|
if coco_eval is None:
|
|
self._logger.warn("No predictions from the model!")
|
|
return {metric: float("nan") for metric in metrics}
|
|
|
|
|
|
results = {
|
|
metric: float(coco_eval.stats[idx] * 100 if coco_eval.stats[idx] >= 0 else "nan")
|
|
for idx, metric in enumerate(metrics)
|
|
}
|
|
self._logger.info(
|
|
"Evaluation results for {}: \n".format(iou_type) + create_small_table(results)
|
|
)
|
|
if not np.isfinite(sum(results.values())):
|
|
self._logger.info("Some metrics cannot be computed and is shown as NaN.")
|
|
|
|
if class_names is None or len(class_names) <= 1:
|
|
return results
|
|
|
|
|
|
precisions = coco_eval.eval["precision"]
|
|
|
|
assert len(class_names) == precisions.shape[2]
|
|
|
|
results_per_category = []
|
|
for idx, name in enumerate(class_names):
|
|
|
|
|
|
precision = precisions[:, :, idx, 0, -1]
|
|
precision = precision[precision > -1]
|
|
ap = np.mean(precision) if precision.size else float("nan")
|
|
results_per_category.append(("{}".format(name), float(ap * 100)))
|
|
|
|
|
|
N_COLS = min(6, len(results_per_category) * 2)
|
|
results_flatten = list(itertools.chain(*results_per_category))
|
|
results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)])
|
|
table = tabulate(
|
|
results_2d,
|
|
tablefmt="pipe",
|
|
floatfmt=".3f",
|
|
headers=["category", "AP"] * (N_COLS // 2),
|
|
numalign="left",
|
|
)
|
|
self._logger.info("Per-category {} AP: \n".format(iou_type) + table)
|
|
|
|
results.update({"AP-" + name: ap for name, ap in results_per_category})
|
|
return results
|
|
|
|
|
|
def instances_to_coco_json(instances, img_id):
|
|
"""
|
|
Dump an "Instances" object to a COCO-format json that's used for evaluation.
|
|
|
|
Args:
|
|
instances (Instances):
|
|
img_id (int): the image id
|
|
|
|
Returns:
|
|
list[dict]: list of json annotations in COCO format.
|
|
"""
|
|
num_instance = len(instances)
|
|
if num_instance == 0:
|
|
return []
|
|
|
|
boxes = instances.pred_boxes.tensor.numpy()
|
|
boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
|
|
boxes = boxes.tolist()
|
|
scores = instances.scores.tolist()
|
|
classes = instances.pred_classes.tolist()
|
|
|
|
has_mask = instances.has("pred_masks")
|
|
if has_mask:
|
|
|
|
|
|
rles = [
|
|
mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0]
|
|
for mask in instances.pred_masks
|
|
]
|
|
for rle in rles:
|
|
|
|
|
|
|
|
|
|
rle["counts"] = rle["counts"].decode("utf-8")
|
|
|
|
has_keypoints = instances.has("pred_keypoints")
|
|
if has_keypoints:
|
|
keypoints = instances.pred_keypoints
|
|
|
|
results = []
|
|
for k in range(num_instance):
|
|
result = {
|
|
"image_id": img_id,
|
|
"category_id": classes[k],
|
|
"bbox": boxes[k],
|
|
"score": scores[k],
|
|
}
|
|
if has_mask:
|
|
result["segmentation"] = rles[k]
|
|
if has_keypoints:
|
|
|
|
|
|
|
|
|
|
|
|
keypoints[k][:, :2] -= 0.5
|
|
result["keypoints"] = keypoints[k].flatten().tolist()
|
|
results.append(result)
|
|
return results
|
|
|
|
|
|
|
|
|
|
def _evaluate_box_proposals(dataset_predictions, coco_api, thresholds=None, area="all", limit=None):
|
|
"""
|
|
Evaluate detection proposal recall metrics. This function is a much
|
|
faster alternative to the official COCO API recall evaluation code. However,
|
|
it produces slightly different results.
|
|
"""
|
|
|
|
|
|
areas = {
|
|
"all": 0,
|
|
"small": 1,
|
|
"medium": 2,
|
|
"large": 3,
|
|
"96-128": 4,
|
|
"128-256": 5,
|
|
"256-512": 6,
|
|
"512-inf": 7,
|
|
}
|
|
area_ranges = [
|
|
[0**2, 1e5**2],
|
|
[0**2, 32**2],
|
|
[32**2, 96**2],
|
|
[96**2, 1e5**2],
|
|
[96**2, 128**2],
|
|
[128**2, 256**2],
|
|
[256**2, 512**2],
|
|
[512**2, 1e5**2],
|
|
]
|
|
assert area in areas, "Unknown area range: {}".format(area)
|
|
area_range = area_ranges[areas[area]]
|
|
gt_overlaps = []
|
|
num_pos = 0
|
|
|
|
for prediction_dict in dataset_predictions:
|
|
predictions = prediction_dict["proposals"]
|
|
|
|
|
|
|
|
inds = predictions.objectness_logits.sort(descending=True)[1]
|
|
predictions = predictions[inds]
|
|
|
|
ann_ids = coco_api.getAnnIds(imgIds=prediction_dict["image_id"])
|
|
anno = coco_api.loadAnns(ann_ids)
|
|
gt_boxes = [
|
|
BoxMode.convert(obj["bbox"], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS)
|
|
for obj in anno
|
|
if obj["iscrowd"] == 0
|
|
]
|
|
gt_boxes = torch.as_tensor(gt_boxes).reshape(-1, 4)
|
|
gt_boxes = Boxes(gt_boxes)
|
|
gt_areas = torch.as_tensor([obj["area"] for obj in anno if obj["iscrowd"] == 0])
|
|
|
|
if len(gt_boxes) == 0 or len(predictions) == 0:
|
|
continue
|
|
|
|
valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1])
|
|
gt_boxes = gt_boxes[valid_gt_inds]
|
|
|
|
num_pos += len(gt_boxes)
|
|
|
|
if len(gt_boxes) == 0:
|
|
continue
|
|
|
|
if limit is not None and len(predictions) > limit:
|
|
predictions = predictions[:limit]
|
|
|
|
overlaps = pairwise_iou(predictions.proposal_boxes, gt_boxes)
|
|
|
|
_gt_overlaps = torch.zeros(len(gt_boxes))
|
|
for j in range(min(len(predictions), len(gt_boxes))):
|
|
|
|
|
|
max_overlaps, argmax_overlaps = overlaps.max(dim=0)
|
|
|
|
|
|
gt_ovr, gt_ind = max_overlaps.max(dim=0)
|
|
assert gt_ovr >= 0
|
|
|
|
box_ind = argmax_overlaps[gt_ind]
|
|
|
|
_gt_overlaps[j] = overlaps[box_ind, gt_ind]
|
|
assert _gt_overlaps[j] == gt_ovr
|
|
|
|
overlaps[box_ind, :] = -1
|
|
overlaps[:, gt_ind] = -1
|
|
|
|
|
|
gt_overlaps.append(_gt_overlaps)
|
|
gt_overlaps = (
|
|
torch.cat(gt_overlaps, dim=0) if len(gt_overlaps) else torch.zeros(0, dtype=torch.float32)
|
|
)
|
|
gt_overlaps, _ = torch.sort(gt_overlaps)
|
|
|
|
if thresholds is None:
|
|
step = 0.05
|
|
thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32)
|
|
recalls = torch.zeros_like(thresholds)
|
|
|
|
for i, t in enumerate(thresholds):
|
|
recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos)
|
|
|
|
ar = recalls.mean()
|
|
return {
|
|
"ar": ar,
|
|
"recalls": recalls,
|
|
"thresholds": thresholds,
|
|
"gt_overlaps": gt_overlaps,
|
|
"num_pos": num_pos,
|
|
}
|
|
|
|
|
|
def _evaluate_predictions_on_coco(
|
|
coco_gt,
|
|
coco_results,
|
|
iou_type,
|
|
kpt_oks_sigmas=None,
|
|
cocoeval_fn=COCOeval_opt,
|
|
img_ids=None,
|
|
max_dets_per_image=None,
|
|
):
|
|
"""
|
|
Evaluate the coco results using COCOEval API.
|
|
"""
|
|
assert len(coco_results) > 0
|
|
|
|
if iou_type == "segm":
|
|
coco_results = copy.deepcopy(coco_results)
|
|
|
|
|
|
|
|
|
|
for c in coco_results:
|
|
c.pop("bbox", None)
|
|
|
|
coco_dt = coco_gt.loadRes(coco_results)
|
|
coco_eval = cocoeval_fn(coco_gt, coco_dt, iou_type)
|
|
|
|
if max_dets_per_image is None:
|
|
max_dets_per_image = [1, 10, 100]
|
|
else:
|
|
assert (
|
|
len(max_dets_per_image) >= 3
|
|
), "COCOeval requires maxDets (and max_dets_per_image) to have length at least 3"
|
|
|
|
|
|
if max_dets_per_image[2] != 100:
|
|
coco_eval = COCOevalMaxDets(coco_gt, coco_dt, iou_type)
|
|
if iou_type != "keypoints":
|
|
coco_eval.params.maxDets = max_dets_per_image
|
|
|
|
if img_ids is not None:
|
|
coco_eval.params.imgIds = img_ids
|
|
|
|
if iou_type == "keypoints":
|
|
|
|
if kpt_oks_sigmas:
|
|
assert hasattr(coco_eval.params, "kpt_oks_sigmas"), "pycocotools is too old!"
|
|
coco_eval.params.kpt_oks_sigmas = np.array(kpt_oks_sigmas)
|
|
|
|
|
|
num_keypoints_dt = len(coco_results[0]["keypoints"]) // 3
|
|
num_keypoints_gt = len(next(iter(coco_gt.anns.values()))["keypoints"]) // 3
|
|
num_keypoints_oks = len(coco_eval.params.kpt_oks_sigmas)
|
|
assert num_keypoints_oks == num_keypoints_dt == num_keypoints_gt, (
|
|
f"[COCOEvaluator] Prediction contain {num_keypoints_dt} keypoints. "
|
|
f"Ground truth contains {num_keypoints_gt} keypoints. "
|
|
f"The length of cfg.TEST.KEYPOINT_OKS_SIGMAS is {num_keypoints_oks}. "
|
|
"They have to agree with each other. For meaning of OKS, please refer to "
|
|
"http://cocodataset.org/#keypoints-eval."
|
|
)
|
|
|
|
coco_eval.evaluate()
|
|
coco_eval.accumulate()
|
|
coco_eval.summarize()
|
|
|
|
return coco_eval
|
|
|
|
|
|
class COCOevalMaxDets(COCOeval):
|
|
"""
|
|
Modified version of COCOeval for evaluating AP with a custom
|
|
maxDets (by default for COCO, maxDets is 100)
|
|
"""
|
|
|
|
def summarize(self):
|
|
"""
|
|
Compute and display summary metrics for evaluation results given
|
|
a custom value for max_dets_per_image
|
|
"""
|
|
|
|
def _summarize(ap=1, iouThr=None, areaRng="all", maxDets=100):
|
|
p = self.params
|
|
iStr = " {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}"
|
|
titleStr = "Average Precision" if ap == 1 else "Average Recall"
|
|
typeStr = "(AP)" if ap == 1 else "(AR)"
|
|
iouStr = (
|
|
"{:0.2f}:{:0.2f}".format(p.iouThrs[0], p.iouThrs[-1])
|
|
if iouThr is None
|
|
else "{:0.2f}".format(iouThr)
|
|
)
|
|
|
|
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
|
|
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
|
|
if ap == 1:
|
|
|
|
s = self.eval["precision"]
|
|
|
|
if iouThr is not None:
|
|
t = np.where(iouThr == p.iouThrs)[0]
|
|
s = s[t]
|
|
s = s[:, :, :, aind, mind]
|
|
else:
|
|
|
|
s = self.eval["recall"]
|
|
if iouThr is not None:
|
|
t = np.where(iouThr == p.iouThrs)[0]
|
|
s = s[t]
|
|
s = s[:, :, aind, mind]
|
|
if len(s[s > -1]) == 0:
|
|
mean_s = -1
|
|
else:
|
|
mean_s = np.mean(s[s > -1])
|
|
print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s))
|
|
return mean_s
|
|
|
|
def _summarizeDets():
|
|
stats = np.zeros((12,))
|
|
|
|
stats[0] = _summarize(1, maxDets=self.params.maxDets[2])
|
|
stats[1] = _summarize(1, iouThr=0.5, maxDets=self.params.maxDets[2])
|
|
stats[2] = _summarize(1, iouThr=0.75, maxDets=self.params.maxDets[2])
|
|
stats[3] = _summarize(1, areaRng="small", maxDets=self.params.maxDets[2])
|
|
stats[4] = _summarize(1, areaRng="medium", maxDets=self.params.maxDets[2])
|
|
stats[5] = _summarize(1, areaRng="large", maxDets=self.params.maxDets[2])
|
|
stats[6] = _summarize(0, maxDets=self.params.maxDets[0])
|
|
stats[7] = _summarize(0, maxDets=self.params.maxDets[1])
|
|
stats[8] = _summarize(0, maxDets=self.params.maxDets[2])
|
|
stats[9] = _summarize(0, areaRng="small", maxDets=self.params.maxDets[2])
|
|
stats[10] = _summarize(0, areaRng="medium", maxDets=self.params.maxDets[2])
|
|
stats[11] = _summarize(0, areaRng="large", maxDets=self.params.maxDets[2])
|
|
return stats
|
|
|
|
def _summarizeKps():
|
|
stats = np.zeros((10,))
|
|
stats[0] = _summarize(1, maxDets=20)
|
|
stats[1] = _summarize(1, maxDets=20, iouThr=0.5)
|
|
stats[2] = _summarize(1, maxDets=20, iouThr=0.75)
|
|
stats[3] = _summarize(1, maxDets=20, areaRng="medium")
|
|
stats[4] = _summarize(1, maxDets=20, areaRng="large")
|
|
stats[5] = _summarize(0, maxDets=20)
|
|
stats[6] = _summarize(0, maxDets=20, iouThr=0.5)
|
|
stats[7] = _summarize(0, maxDets=20, iouThr=0.75)
|
|
stats[8] = _summarize(0, maxDets=20, areaRng="medium")
|
|
stats[9] = _summarize(0, maxDets=20, areaRng="large")
|
|
return stats
|
|
|
|
if not self.eval:
|
|
raise Exception("Please run accumulate() first")
|
|
iouType = self.params.iouType
|
|
if iouType == "segm" or iouType == "bbox":
|
|
summarize = _summarizeDets
|
|
elif iouType == "keypoints":
|
|
summarize = _summarizeKps
|
|
self.stats = summarize()
|
|
|
|
def __str__(self):
|
|
self.summarize()
|
|
|