|
|
|
import contextlib
|
|
import copy
|
|
import itertools
|
|
import logging
|
|
import numpy as np
|
|
import pickle
|
|
import random
|
|
from typing import Callable, Union
|
|
import torch
|
|
import torch.utils.data as data
|
|
from torch.utils.data.sampler import Sampler
|
|
|
|
from detectron2.utils.serialize import PicklableWrapper
|
|
|
|
__all__ = ["MapDataset", "DatasetFromList", "AspectRatioGroupedDataset", "ToIterableDataset"]
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
def _roundrobin(*iterables):
|
|
"roundrobin('ABC', 'D', 'EF') --> A D E B F C"
|
|
|
|
num_active = len(iterables)
|
|
nexts = itertools.cycle(iter(it).__next__ for it in iterables)
|
|
while num_active:
|
|
try:
|
|
for next in nexts:
|
|
yield next()
|
|
except StopIteration:
|
|
|
|
num_active -= 1
|
|
nexts = itertools.cycle(itertools.islice(nexts, num_active))
|
|
|
|
|
|
def _shard_iterator_dataloader_worker(iterable, chunk_size=1):
|
|
|
|
worker_info = data.get_worker_info()
|
|
if worker_info is None or worker_info.num_workers == 1:
|
|
|
|
yield from iterable
|
|
else:
|
|
|
|
|
|
|
|
|
|
yield from _roundrobin(
|
|
*[
|
|
itertools.islice(
|
|
iterable,
|
|
worker_info.id * chunk_size + chunk_i,
|
|
None,
|
|
worker_info.num_workers * chunk_size,
|
|
)
|
|
for chunk_i in range(chunk_size)
|
|
]
|
|
)
|
|
|
|
|
|
class _MapIterableDataset(data.IterableDataset):
|
|
"""
|
|
Map a function over elements in an IterableDataset.
|
|
|
|
Similar to pytorch's MapIterDataPipe, but support filtering when map_func
|
|
returns None.
|
|
|
|
This class is not public-facing. Will be called by `MapDataset`.
|
|
"""
|
|
|
|
def __init__(self, dataset, map_func):
|
|
self._dataset = dataset
|
|
self._map_func = PicklableWrapper(map_func)
|
|
|
|
def __len__(self):
|
|
return len(self._dataset)
|
|
|
|
def __iter__(self):
|
|
for x in map(self._map_func, self._dataset):
|
|
if x is not None:
|
|
yield x
|
|
|
|
|
|
class MapDataset(data.Dataset):
|
|
"""
|
|
Map a function over the elements in a dataset.
|
|
"""
|
|
|
|
def __init__(self, dataset, map_func):
|
|
"""
|
|
Args:
|
|
dataset: a dataset where map function is applied. Can be either
|
|
map-style or iterable dataset. When given an iterable dataset,
|
|
the returned object will also be an iterable dataset.
|
|
map_func: a callable which maps the element in dataset. map_func can
|
|
return None to skip the data (e.g. in case of errors).
|
|
How None is handled depends on the style of `dataset`.
|
|
If `dataset` is map-style, it randomly tries other elements.
|
|
If `dataset` is iterable, it skips the data and tries the next.
|
|
"""
|
|
self._dataset = dataset
|
|
self._map_func = PicklableWrapper(map_func)
|
|
|
|
self._rng = random.Random(42)
|
|
self._fallback_candidates = set(range(len(dataset)))
|
|
|
|
def __new__(cls, dataset, map_func):
|
|
is_iterable = isinstance(dataset, data.IterableDataset)
|
|
if is_iterable:
|
|
return _MapIterableDataset(dataset, map_func)
|
|
else:
|
|
return super().__new__(cls)
|
|
|
|
def __getnewargs__(self):
|
|
return self._dataset, self._map_func
|
|
|
|
def __len__(self):
|
|
return len(self._dataset)
|
|
|
|
def __getitem__(self, idx):
|
|
retry_count = 0
|
|
cur_idx = int(idx)
|
|
|
|
while True:
|
|
data = self._map_func(self._dataset[cur_idx])
|
|
if data is not None:
|
|
self._fallback_candidates.add(cur_idx)
|
|
return data
|
|
|
|
|
|
retry_count += 1
|
|
self._fallback_candidates.discard(cur_idx)
|
|
cur_idx = self._rng.sample(self._fallback_candidates, k=1)[0]
|
|
|
|
if retry_count >= 3:
|
|
logger = logging.getLogger(__name__)
|
|
logger.warning(
|
|
"Failed to apply `_map_func` for idx: {}, retry count: {}".format(
|
|
idx, retry_count
|
|
)
|
|
)
|
|
|
|
|
|
class _TorchSerializedList:
|
|
"""
|
|
A list-like object whose items are serialized and stored in a torch tensor. When
|
|
launching a process that uses TorchSerializedList with "fork" start method,
|
|
the subprocess can read the same buffer without triggering copy-on-access. When
|
|
launching a process that uses TorchSerializedList with "spawn/forkserver" start
|
|
method, the list will be pickled by a special ForkingPickler registered by PyTorch
|
|
that moves data to shared memory. In both cases, this allows parent and child
|
|
processes to share RAM for the list data, hence avoids the issue in
|
|
https://github.com/pytorch/pytorch/issues/13246.
|
|
|
|
See also https://ppwwyyxx.com/blog/2022/Demystify-RAM-Usage-in-Multiprocess-DataLoader/
|
|
on how it works.
|
|
"""
|
|
|
|
def __init__(self, lst: list):
|
|
self._lst = lst
|
|
|
|
def _serialize(data):
|
|
buffer = pickle.dumps(data, protocol=-1)
|
|
return np.frombuffer(buffer, dtype=np.uint8)
|
|
|
|
logger.info(
|
|
"Serializing {} elements to byte tensors and concatenating them all ...".format(
|
|
len(self._lst)
|
|
)
|
|
)
|
|
self._lst = [_serialize(x) for x in self._lst]
|
|
self._addr = np.asarray([len(x) for x in self._lst], dtype=np.int64)
|
|
self._addr = torch.from_numpy(np.cumsum(self._addr))
|
|
self._lst = torch.from_numpy(np.concatenate(self._lst))
|
|
logger.info("Serialized dataset takes {:.2f} MiB".format(len(self._lst) / 1024**2))
|
|
|
|
def __len__(self):
|
|
return len(self._addr)
|
|
|
|
def __getitem__(self, idx):
|
|
start_addr = 0 if idx == 0 else self._addr[idx - 1].item()
|
|
end_addr = self._addr[idx].item()
|
|
bytes = memoryview(self._lst[start_addr:end_addr].numpy())
|
|
|
|
|
|
return pickle.loads(bytes)
|
|
|
|
|
|
_DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD = _TorchSerializedList
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def set_default_dataset_from_list_serialize_method(new):
|
|
"""
|
|
Context manager for using custom serialize function when creating DatasetFromList
|
|
"""
|
|
|
|
global _DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD
|
|
orig = _DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD
|
|
_DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD = new
|
|
yield
|
|
_DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD = orig
|
|
|
|
|
|
class DatasetFromList(data.Dataset):
|
|
"""
|
|
Wrap a list to a torch Dataset. It produces elements of the list as data.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
lst: list,
|
|
copy: bool = True,
|
|
serialize: Union[bool, Callable] = True,
|
|
):
|
|
"""
|
|
Args:
|
|
lst (list): a list which contains elements to produce.
|
|
copy (bool): whether to deepcopy the element when producing it,
|
|
so that the result can be modified in place without affecting the
|
|
source in the list.
|
|
serialize (bool or callable): whether to serialize the stroage to other
|
|
backend. If `True`, the default serialize method will be used, if given
|
|
a callable, the callable will be used as serialize method.
|
|
"""
|
|
self._lst = lst
|
|
self._copy = copy
|
|
if not isinstance(serialize, (bool, Callable)):
|
|
raise TypeError(f"Unsupported type for argument `serailzie`: {serialize}")
|
|
self._serialize = serialize is not False
|
|
|
|
if self._serialize:
|
|
serialize_method = (
|
|
serialize
|
|
if isinstance(serialize, Callable)
|
|
else _DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD
|
|
)
|
|
logger.info(f"Serializing the dataset using: {serialize_method}")
|
|
self._lst = serialize_method(self._lst)
|
|
|
|
def __len__(self):
|
|
return len(self._lst)
|
|
|
|
def __getitem__(self, idx):
|
|
if self._copy and not self._serialize:
|
|
return copy.deepcopy(self._lst[idx])
|
|
else:
|
|
return self._lst[idx]
|
|
|
|
|
|
class ToIterableDataset(data.IterableDataset):
|
|
"""
|
|
Convert an old indices-based (also called map-style) dataset
|
|
to an iterable-style dataset.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dataset: data.Dataset,
|
|
sampler: Sampler,
|
|
shard_sampler: bool = True,
|
|
shard_chunk_size: int = 1,
|
|
):
|
|
"""
|
|
Args:
|
|
dataset: an old-style dataset with ``__getitem__``
|
|
sampler: a cheap iterable that produces indices to be applied on ``dataset``.
|
|
shard_sampler: whether to shard the sampler based on the current pytorch data loader
|
|
worker id. When an IterableDataset is forked by pytorch's DataLoader into multiple
|
|
workers, it is responsible for sharding its data based on worker id so that workers
|
|
don't produce identical data.
|
|
|
|
Most samplers (like our TrainingSampler) do not shard based on dataloader worker id
|
|
and this argument should be set to True. But certain samplers may be already
|
|
sharded, in that case this argument should be set to False.
|
|
shard_chunk_size: when sharding the sampler, each worker will
|
|
"""
|
|
assert not isinstance(dataset, data.IterableDataset), dataset
|
|
assert isinstance(sampler, Sampler), sampler
|
|
self.dataset = dataset
|
|
self.sampler = sampler
|
|
self.shard_sampler = shard_sampler
|
|
self.shard_chunk_size = shard_chunk_size
|
|
|
|
def __iter__(self):
|
|
if not self.shard_sampler:
|
|
sampler = self.sampler
|
|
else:
|
|
|
|
|
|
|
|
|
|
|
|
sampler = _shard_iterator_dataloader_worker(self.sampler, self.shard_chunk_size)
|
|
for idx in sampler:
|
|
yield self.dataset[idx]
|
|
|
|
def __len__(self):
|
|
return len(self.sampler)
|
|
|
|
|
|
class AspectRatioGroupedDataset(data.IterableDataset):
|
|
"""
|
|
Batch data that have similar aspect ratio together.
|
|
In this implementation, images whose aspect ratio < (or >) 1 will
|
|
be batched together.
|
|
This improves training speed because the images then need less padding
|
|
to form a batch.
|
|
|
|
It assumes the underlying dataset produces dicts with "width" and "height" keys.
|
|
It will then produce a list of original dicts with length = batch_size,
|
|
all with similar aspect ratios.
|
|
"""
|
|
|
|
def __init__(self, dataset, batch_size):
|
|
"""
|
|
Args:
|
|
dataset: an iterable. Each element must be a dict with keys
|
|
"width" and "height", which will be used to batch data.
|
|
batch_size (int):
|
|
"""
|
|
self.dataset = dataset
|
|
self.batch_size = batch_size
|
|
self._buckets = [[] for _ in range(2)]
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
for d in self.dataset:
|
|
w, h = d["width"], d["height"]
|
|
bucket_id = 0 if w > h else 1
|
|
bucket = self._buckets[bucket_id]
|
|
bucket.append(d)
|
|
if len(bucket) == self.batch_size:
|
|
data = bucket[:]
|
|
|
|
|
|
del bucket[:]
|
|
yield data
|
|
|