|
|
|
import copy
|
|
import logging
|
|
import re
|
|
from typing import Dict, List
|
|
import torch
|
|
|
|
|
|
def convert_basic_c2_names(original_keys):
|
|
"""
|
|
Apply some basic name conversion to names in C2 weights.
|
|
It only deals with typical backbone models.
|
|
|
|
Args:
|
|
original_keys (list[str]):
|
|
Returns:
|
|
list[str]: The same number of strings matching those in original_keys.
|
|
"""
|
|
layer_keys = copy.deepcopy(original_keys)
|
|
layer_keys = [
|
|
{"pred_b": "linear_b", "pred_w": "linear_w"}.get(k, k) for k in layer_keys
|
|
]
|
|
|
|
layer_keys = [k.replace("_", ".") for k in layer_keys]
|
|
layer_keys = [re.sub("\\.b$", ".bias", k) for k in layer_keys]
|
|
layer_keys = [re.sub("\\.w$", ".weight", k) for k in layer_keys]
|
|
|
|
layer_keys = [re.sub("bn\\.s$", "norm.weight", k) for k in layer_keys]
|
|
layer_keys = [re.sub("bn\\.bias$", "norm.bias", k) for k in layer_keys]
|
|
layer_keys = [re.sub("bn\\.rm", "norm.running_mean", k) for k in layer_keys]
|
|
layer_keys = [re.sub("bn\\.running.mean$", "norm.running_mean", k) for k in layer_keys]
|
|
layer_keys = [re.sub("bn\\.riv$", "norm.running_var", k) for k in layer_keys]
|
|
layer_keys = [re.sub("bn\\.running.var$", "norm.running_var", k) for k in layer_keys]
|
|
layer_keys = [re.sub("bn\\.gamma$", "norm.weight", k) for k in layer_keys]
|
|
layer_keys = [re.sub("bn\\.beta$", "norm.bias", k) for k in layer_keys]
|
|
layer_keys = [re.sub("gn\\.s$", "norm.weight", k) for k in layer_keys]
|
|
layer_keys = [re.sub("gn\\.bias$", "norm.bias", k) for k in layer_keys]
|
|
|
|
|
|
layer_keys = [re.sub("^res\\.conv1\\.norm\\.", "conv1.norm.", k) for k in layer_keys]
|
|
|
|
layer_keys = [re.sub("^conv1\\.", "stem.conv1.", k) for k in layer_keys]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
layer_keys = [k.replace(".branch1.", ".shortcut.") for k in layer_keys]
|
|
layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys]
|
|
layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys]
|
|
layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys]
|
|
|
|
|
|
layer_keys = [re.sub("^body.conv.fcn", "body_conv_fcn", k) for k in layer_keys]
|
|
layer_keys = [k.replace("AnnIndex.lowres", "ann_index_lowres") for k in layer_keys]
|
|
layer_keys = [k.replace("Index.UV.lowres", "index_uv_lowres") for k in layer_keys]
|
|
layer_keys = [k.replace("U.lowres", "u_lowres") for k in layer_keys]
|
|
layer_keys = [k.replace("V.lowres", "v_lowres") for k in layer_keys]
|
|
return layer_keys
|
|
|
|
|
|
def convert_c2_detectron_names(weights):
|
|
"""
|
|
Map Caffe2 Detectron weight names to Detectron2 names.
|
|
|
|
Args:
|
|
weights (dict): name -> tensor
|
|
|
|
Returns:
|
|
dict: detectron2 names -> tensor
|
|
dict: detectron2 names -> C2 names
|
|
"""
|
|
logger = logging.getLogger(__name__)
|
|
logger.info("Renaming Caffe2 weights ......")
|
|
original_keys = sorted(weights.keys())
|
|
layer_keys = copy.deepcopy(original_keys)
|
|
|
|
layer_keys = convert_basic_c2_names(layer_keys)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
layer_keys = [
|
|
k.replace("conv.rpn.fpn2", "proposal_generator.rpn_head.conv") for k in layer_keys
|
|
]
|
|
|
|
layer_keys = [k.replace("conv.rpn", "proposal_generator.rpn_head.conv") for k in layer_keys]
|
|
|
|
|
|
|
|
|
|
|
|
layer_keys = [
|
|
k.replace("rpn.bbox.pred.fpn2", "proposal_generator.rpn_head.anchor_deltas")
|
|
for k in layer_keys
|
|
]
|
|
layer_keys = [
|
|
k.replace("rpn.cls.logits.fpn2", "proposal_generator.rpn_head.objectness_logits")
|
|
for k in layer_keys
|
|
]
|
|
|
|
layer_keys = [
|
|
k.replace("rpn.bbox.pred", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys
|
|
]
|
|
layer_keys = [
|
|
k.replace("rpn.cls.logits", "proposal_generator.rpn_head.objectness_logits")
|
|
for k in layer_keys
|
|
]
|
|
|
|
|
|
|
|
|
|
layer_keys = [re.sub("^bbox\\.pred", "bbox_pred", k) for k in layer_keys]
|
|
layer_keys = [re.sub("^cls\\.score", "cls_score", k) for k in layer_keys]
|
|
layer_keys = [re.sub("^fc6\\.", "box_head.fc1.", k) for k in layer_keys]
|
|
layer_keys = [re.sub("^fc7\\.", "box_head.fc2.", k) for k in layer_keys]
|
|
|
|
layer_keys = [re.sub("^head\\.conv", "box_head.conv", k) for k in layer_keys]
|
|
|
|
|
|
|
|
|
|
def fpn_map(name):
|
|
"""
|
|
Look for keys with the following patterns:
|
|
1) Starts with "fpn.inner."
|
|
Example: "fpn.inner.res2.2.sum.lateral.weight"
|
|
Meaning: These are lateral pathway convolutions
|
|
2) Starts with "fpn.res"
|
|
Example: "fpn.res2.2.sum.weight"
|
|
Meaning: These are FPN output convolutions
|
|
"""
|
|
splits = name.split(".")
|
|
norm = ".norm" if "norm" in splits else ""
|
|
if name.startswith("fpn.inner."):
|
|
|
|
stage = int(splits[2][len("res") :])
|
|
return "fpn_lateral{}{}.{}".format(stage, norm, splits[-1])
|
|
elif name.startswith("fpn.res"):
|
|
|
|
stage = int(splits[1][len("res") :])
|
|
return "fpn_output{}{}.{}".format(stage, norm, splits[-1])
|
|
return name
|
|
|
|
layer_keys = [fpn_map(k) for k in layer_keys]
|
|
|
|
|
|
|
|
|
|
|
|
layer_keys = [k.replace(".[mask].fcn", "mask_head.mask_fcn") for k in layer_keys]
|
|
layer_keys = [re.sub("^\\.mask\\.fcn", "mask_head.mask_fcn", k) for k in layer_keys]
|
|
layer_keys = [k.replace("mask.fcn.logits", "mask_head.predictor") for k in layer_keys]
|
|
|
|
layer_keys = [k.replace("conv5.mask", "mask_head.deconv") for k in layer_keys]
|
|
|
|
|
|
|
|
|
|
|
|
layer_keys = [k.replace("conv.fcn", "roi_heads.keypoint_head.conv_fcn") for k in layer_keys]
|
|
layer_keys = [
|
|
k.replace("kps.score.lowres", "roi_heads.keypoint_head.score_lowres") for k in layer_keys
|
|
]
|
|
layer_keys = [k.replace("kps.score.", "roi_heads.keypoint_head.score.") for k in layer_keys]
|
|
|
|
|
|
|
|
|
|
assert len(set(layer_keys)) == len(layer_keys)
|
|
assert len(original_keys) == len(layer_keys)
|
|
|
|
new_weights = {}
|
|
new_keys_to_original_keys = {}
|
|
for orig, renamed in zip(original_keys, layer_keys):
|
|
new_keys_to_original_keys[renamed] = orig
|
|
if renamed.startswith("bbox_pred.") or renamed.startswith("mask_head.predictor."):
|
|
|
|
new_start_idx = 4 if renamed.startswith("bbox_pred.") else 1
|
|
new_weights[renamed] = weights[orig][new_start_idx:]
|
|
logger.info(
|
|
"Remove prediction weight for background class in {}. The shape changes from "
|
|
"{} to {}.".format(
|
|
renamed, tuple(weights[orig].shape), tuple(new_weights[renamed].shape)
|
|
)
|
|
)
|
|
elif renamed.startswith("cls_score."):
|
|
|
|
logger.info(
|
|
"Move classification weights for background class in {} from index 0 to "
|
|
"index {}.".format(renamed, weights[orig].shape[0] - 1)
|
|
)
|
|
new_weights[renamed] = torch.cat([weights[orig][1:], weights[orig][:1]])
|
|
else:
|
|
new_weights[renamed] = weights[orig]
|
|
|
|
return new_weights, new_keys_to_original_keys
|
|
|
|
|
|
|
|
|
|
def align_and_update_state_dicts(model_state_dict, ckpt_state_dict, c2_conversion=True):
|
|
"""
|
|
Match names between the two state-dict, and returns a new chkpt_state_dict with names
|
|
converted to match model_state_dict with heuristics. The returned dict can be later
|
|
loaded with fvcore checkpointer.
|
|
If `c2_conversion==True`, `ckpt_state_dict` is assumed to be a Caffe2
|
|
model and will be renamed at first.
|
|
|
|
Strategy: suppose that the models that we will create will have prefixes appended
|
|
to each of its keys, for example due to an extra level of nesting that the original
|
|
pre-trained weights from ImageNet won't contain. For example, model.state_dict()
|
|
might return backbone[0].body.res2.conv1.weight, while the pre-trained model contains
|
|
res2.conv1.weight. We thus want to match both parameters together.
|
|
For that, we look for each model weight, look among all loaded keys if there is one
|
|
that is a suffix of the current weight name, and use it if that's the case.
|
|
If multiple matches exist, take the one with longest size
|
|
of the corresponding name. For example, for the same model as before, the pretrained
|
|
weight file can contain both res2.conv1.weight, as well as conv1.weight. In this case,
|
|
we want to match backbone[0].body.conv1.weight to conv1.weight, and
|
|
backbone[0].body.res2.conv1.weight to res2.conv1.weight.
|
|
"""
|
|
model_keys = sorted(model_state_dict.keys())
|
|
if c2_conversion:
|
|
ckpt_state_dict, original_keys = convert_c2_detectron_names(ckpt_state_dict)
|
|
|
|
else:
|
|
original_keys = {x: x for x in ckpt_state_dict.keys()}
|
|
ckpt_keys = sorted(ckpt_state_dict.keys())
|
|
|
|
def match(a, b):
|
|
|
|
|
|
|
|
return a == b or a.endswith("." + b)
|
|
|
|
|
|
|
|
match_matrix = [len(j) if match(i, j) else 0 for i in model_keys for j in ckpt_keys]
|
|
match_matrix = torch.as_tensor(match_matrix).view(len(model_keys), len(ckpt_keys))
|
|
|
|
max_match_size, idxs = match_matrix.max(1)
|
|
|
|
idxs[max_match_size == 0] = -1
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
matched_keys = {}
|
|
result_state_dict = {}
|
|
for idx_model, idx_ckpt in enumerate(idxs.tolist()):
|
|
if idx_ckpt == -1:
|
|
continue
|
|
key_model = model_keys[idx_model]
|
|
key_ckpt = ckpt_keys[idx_ckpt]
|
|
value_ckpt = ckpt_state_dict[key_ckpt]
|
|
shape_in_model = model_state_dict[key_model].shape
|
|
|
|
if shape_in_model != value_ckpt.shape:
|
|
logger.warning(
|
|
"Shape of {} in checkpoint is {}, while shape of {} in model is {}.".format(
|
|
key_ckpt, value_ckpt.shape, key_model, shape_in_model
|
|
)
|
|
)
|
|
logger.warning(
|
|
"{} will not be loaded. Please double check and see if this is desired.".format(
|
|
key_ckpt
|
|
)
|
|
)
|
|
continue
|
|
|
|
assert key_model not in result_state_dict
|
|
result_state_dict[key_model] = value_ckpt
|
|
if key_ckpt in matched_keys:
|
|
logger.error(
|
|
"Ambiguity found for {} in checkpoint!"
|
|
"It matches at least two keys in the model ({} and {}).".format(
|
|
key_ckpt, key_model, matched_keys[key_ckpt]
|
|
)
|
|
)
|
|
raise ValueError("Cannot match one checkpoint key to multiple keys in the model.")
|
|
|
|
matched_keys[key_ckpt] = key_model
|
|
|
|
|
|
matched_model_keys = sorted(matched_keys.values())
|
|
if len(matched_model_keys) == 0:
|
|
logger.warning("No weights in checkpoint matched with model.")
|
|
return ckpt_state_dict
|
|
common_prefix = _longest_common_prefix(matched_model_keys)
|
|
rev_matched_keys = {v: k for k, v in matched_keys.items()}
|
|
original_keys = {k: original_keys[rev_matched_keys[k]] for k in matched_model_keys}
|
|
|
|
model_key_groups = _group_keys_by_module(matched_model_keys, original_keys)
|
|
table = []
|
|
memo = set()
|
|
for key_model in matched_model_keys:
|
|
if key_model in memo:
|
|
continue
|
|
if key_model in model_key_groups:
|
|
group = model_key_groups[key_model]
|
|
memo |= set(group)
|
|
shapes = [tuple(model_state_dict[k].shape) for k in group]
|
|
table.append(
|
|
(
|
|
_longest_common_prefix([k[len(common_prefix) :] for k in group]) + "*",
|
|
_group_str([original_keys[k] for k in group]),
|
|
" ".join([str(x).replace(" ", "") for x in shapes]),
|
|
)
|
|
)
|
|
else:
|
|
key_checkpoint = original_keys[key_model]
|
|
shape = str(tuple(model_state_dict[key_model].shape))
|
|
table.append((key_model[len(common_prefix) :], key_checkpoint, shape))
|
|
submodule_str = common_prefix[:-1] if common_prefix else "model"
|
|
logger.info(
|
|
f"Following weights matched with submodule {submodule_str} - Total num: {len(table)}"
|
|
)
|
|
|
|
unmatched_ckpt_keys = [k for k in ckpt_keys if k not in set(matched_keys.keys())]
|
|
for k in unmatched_ckpt_keys:
|
|
result_state_dict[k] = ckpt_state_dict[k]
|
|
return result_state_dict
|
|
|
|
|
|
def _group_keys_by_module(keys: List[str], original_names: Dict[str, str]):
|
|
"""
|
|
Params in the same submodule are grouped together.
|
|
|
|
Args:
|
|
keys: names of all parameters
|
|
original_names: mapping from parameter name to their name in the checkpoint
|
|
|
|
Returns:
|
|
dict[name -> all other names in the same group]
|
|
"""
|
|
|
|
def _submodule_name(key):
|
|
pos = key.rfind(".")
|
|
if pos < 0:
|
|
return None
|
|
prefix = key[: pos + 1]
|
|
return prefix
|
|
|
|
all_submodules = [_submodule_name(k) for k in keys]
|
|
all_submodules = [x for x in all_submodules if x]
|
|
all_submodules = sorted(all_submodules, key=len)
|
|
|
|
ret = {}
|
|
for prefix in all_submodules:
|
|
group = [k for k in keys if k.startswith(prefix)]
|
|
if len(group) <= 1:
|
|
continue
|
|
original_name_lcp = _longest_common_prefix_str([original_names[k] for k in group])
|
|
if len(original_name_lcp) == 0:
|
|
|
|
continue
|
|
|
|
for k in group:
|
|
if k in ret:
|
|
continue
|
|
ret[k] = group
|
|
return ret
|
|
|
|
|
|
def _longest_common_prefix(names: List[str]) -> str:
|
|
"""
|
|
["abc.zfg", "abc.zef"] -> "abc."
|
|
"""
|
|
names = [n.split(".") for n in names]
|
|
m1, m2 = min(names), max(names)
|
|
ret = [a for a, b in zip(m1, m2) if a == b]
|
|
ret = ".".join(ret) + "." if len(ret) else ""
|
|
return ret
|
|
|
|
|
|
def _longest_common_prefix_str(names: List[str]) -> str:
|
|
m1, m2 = min(names), max(names)
|
|
lcp = []
|
|
for a, b in zip(m1, m2):
|
|
if a == b:
|
|
lcp.append(a)
|
|
else:
|
|
break
|
|
lcp = "".join(lcp)
|
|
return lcp
|
|
|
|
|
|
def _group_str(names: List[str]) -> str:
|
|
"""
|
|
Turn "common1", "common2", "common3" into "common{1,2,3}"
|
|
"""
|
|
lcp = _longest_common_prefix_str(names)
|
|
rest = [x[len(lcp) :] for x in names]
|
|
rest = "{" + ",".join(rest) + "}"
|
|
ret = lcp + rest
|
|
|
|
|
|
ret = ret.replace("bn_{beta,running_mean,running_var,gamma}", "bn_*")
|
|
ret = ret.replace("bn_beta,bn_running_mean,bn_running_var,bn_gamma", "bn_*")
|
|
return ret
|
|
|