|
|
|
|
|
|
|
|
|
from abc import ABC, abstractmethod
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, List, Optional, Tuple
|
|
import torch
|
|
from torch.nn import functional as F
|
|
|
|
from detectron2.structures import BoxMode, Instances
|
|
|
|
from densepose import DensePoseDataRelative
|
|
|
|
LossDict = Dict[str, torch.Tensor]
|
|
|
|
|
|
def _linear_interpolation_utilities(v_norm, v0_src, size_src, v0_dst, size_dst, size_z):
|
|
"""
|
|
Computes utility values for linear interpolation at points v.
|
|
The points are given as normalized offsets in the source interval
|
|
(v0_src, v0_src + size_src), more precisely:
|
|
v = v0_src + v_norm * size_src / 256.0
|
|
The computed utilities include lower points v_lo, upper points v_hi,
|
|
interpolation weights v_w and flags j_valid indicating whether the
|
|
points falls into the destination interval (v0_dst, v0_dst + size_dst).
|
|
|
|
Args:
|
|
v_norm (:obj: `torch.Tensor`): tensor of size N containing
|
|
normalized point offsets
|
|
v0_src (:obj: `torch.Tensor`): tensor of size N containing
|
|
left bounds of source intervals for normalized points
|
|
size_src (:obj: `torch.Tensor`): tensor of size N containing
|
|
source interval sizes for normalized points
|
|
v0_dst (:obj: `torch.Tensor`): tensor of size N containing
|
|
left bounds of destination intervals
|
|
size_dst (:obj: `torch.Tensor`): tensor of size N containing
|
|
destination interval sizes
|
|
size_z (int): interval size for data to be interpolated
|
|
|
|
Returns:
|
|
v_lo (:obj: `torch.Tensor`): int tensor of size N containing
|
|
indices of lower values used for interpolation, all values are
|
|
integers from [0, size_z - 1]
|
|
v_hi (:obj: `torch.Tensor`): int tensor of size N containing
|
|
indices of upper values used for interpolation, all values are
|
|
integers from [0, size_z - 1]
|
|
v_w (:obj: `torch.Tensor`): float tensor of size N containing
|
|
interpolation weights
|
|
j_valid (:obj: `torch.Tensor`): uint8 tensor of size N containing
|
|
0 for points outside the estimation interval
|
|
(v0_est, v0_est + size_est) and 1 otherwise
|
|
"""
|
|
v = v0_src + v_norm * size_src / 256.0
|
|
j_valid = (v - v0_dst >= 0) * (v - v0_dst < size_dst)
|
|
v_grid = (v - v0_dst) * size_z / size_dst
|
|
v_lo = v_grid.floor().long().clamp(min=0, max=size_z - 1)
|
|
v_hi = (v_lo + 1).clamp(max=size_z - 1)
|
|
v_grid = torch.min(v_hi.float(), v_grid)
|
|
v_w = v_grid - v_lo.float()
|
|
return v_lo, v_hi, v_w, j_valid
|
|
|
|
|
|
class BilinearInterpolationHelper:
|
|
"""
|
|
Args:
|
|
packed_annotations: object that contains packed annotations
|
|
j_valid (:obj: `torch.Tensor`): uint8 tensor of size M containing
|
|
0 for points to be discarded and 1 for points to be selected
|
|
y_lo (:obj: `torch.Tensor`): int tensor of indices of upper values
|
|
in z_est for each point
|
|
y_hi (:obj: `torch.Tensor`): int tensor of indices of lower values
|
|
in z_est for each point
|
|
x_lo (:obj: `torch.Tensor`): int tensor of indices of left values
|
|
in z_est for each point
|
|
x_hi (:obj: `torch.Tensor`): int tensor of indices of right values
|
|
in z_est for each point
|
|
w_ylo_xlo (:obj: `torch.Tensor`): float tensor of size M;
|
|
contains upper-left value weight for each point
|
|
w_ylo_xhi (:obj: `torch.Tensor`): float tensor of size M;
|
|
contains upper-right value weight for each point
|
|
w_yhi_xlo (:obj: `torch.Tensor`): float tensor of size M;
|
|
contains lower-left value weight for each point
|
|
w_yhi_xhi (:obj: `torch.Tensor`): float tensor of size M;
|
|
contains lower-right value weight for each point
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
packed_annotations: Any,
|
|
j_valid: torch.Tensor,
|
|
y_lo: torch.Tensor,
|
|
y_hi: torch.Tensor,
|
|
x_lo: torch.Tensor,
|
|
x_hi: torch.Tensor,
|
|
w_ylo_xlo: torch.Tensor,
|
|
w_ylo_xhi: torch.Tensor,
|
|
w_yhi_xlo: torch.Tensor,
|
|
w_yhi_xhi: torch.Tensor,
|
|
):
|
|
for k, v in locals().items():
|
|
if k != "self":
|
|
setattr(self, k, v)
|
|
|
|
@staticmethod
|
|
def from_matches(
|
|
packed_annotations: Any, densepose_outputs_size_hw: Tuple[int, int]
|
|
) -> "BilinearInterpolationHelper":
|
|
"""
|
|
Args:
|
|
packed_annotations: annotations packed into tensors, the following
|
|
attributes are required:
|
|
- bbox_xywh_gt
|
|
- bbox_xywh_est
|
|
- x_gt
|
|
- y_gt
|
|
- point_bbox_with_dp_indices
|
|
- point_bbox_indices
|
|
densepose_outputs_size_hw (tuple [int, int]): resolution of
|
|
DensePose predictor outputs (H, W)
|
|
Return:
|
|
An instance of `BilinearInterpolationHelper` used to perform
|
|
interpolation for the given annotation points and output resolution
|
|
"""
|
|
|
|
zh, zw = densepose_outputs_size_hw
|
|
x0_gt, y0_gt, w_gt, h_gt = packed_annotations.bbox_xywh_gt[
|
|
packed_annotations.point_bbox_with_dp_indices
|
|
].unbind(dim=1)
|
|
x0_est, y0_est, w_est, h_est = packed_annotations.bbox_xywh_est[
|
|
packed_annotations.point_bbox_with_dp_indices
|
|
].unbind(dim=1)
|
|
x_lo, x_hi, x_w, jx_valid = _linear_interpolation_utilities(
|
|
packed_annotations.x_gt, x0_gt, w_gt, x0_est, w_est, zw
|
|
)
|
|
y_lo, y_hi, y_w, jy_valid = _linear_interpolation_utilities(
|
|
packed_annotations.y_gt, y0_gt, h_gt, y0_est, h_est, zh
|
|
)
|
|
j_valid = jx_valid * jy_valid
|
|
|
|
w_ylo_xlo = (1.0 - x_w) * (1.0 - y_w)
|
|
w_ylo_xhi = x_w * (1.0 - y_w)
|
|
w_yhi_xlo = (1.0 - x_w) * y_w
|
|
w_yhi_xhi = x_w * y_w
|
|
|
|
return BilinearInterpolationHelper(
|
|
packed_annotations,
|
|
j_valid,
|
|
y_lo,
|
|
y_hi,
|
|
x_lo,
|
|
x_hi,
|
|
w_ylo_xlo,
|
|
w_ylo_xhi,
|
|
|
|
w_yhi_xlo,
|
|
w_yhi_xhi,
|
|
)
|
|
|
|
def extract_at_points(
|
|
self,
|
|
z_est,
|
|
slice_fine_segm=None,
|
|
w_ylo_xlo=None,
|
|
w_ylo_xhi=None,
|
|
w_yhi_xlo=None,
|
|
w_yhi_xhi=None,
|
|
):
|
|
"""
|
|
Extract ground truth values z_gt for valid point indices and estimated
|
|
values z_est using bilinear interpolation over top-left (y_lo, x_lo),
|
|
top-right (y_lo, x_hi), bottom-left (y_hi, x_lo) and bottom-right
|
|
(y_hi, x_hi) values in z_est with corresponding weights:
|
|
w_ylo_xlo, w_ylo_xhi, w_yhi_xlo and w_yhi_xhi.
|
|
Use slice_fine_segm to slice dim=1 in z_est
|
|
"""
|
|
slice_fine_segm = (
|
|
self.packed_annotations.fine_segm_labels_gt
|
|
if slice_fine_segm is None
|
|
else slice_fine_segm
|
|
)
|
|
w_ylo_xlo = self.w_ylo_xlo if w_ylo_xlo is None else w_ylo_xlo
|
|
w_ylo_xhi = self.w_ylo_xhi if w_ylo_xhi is None else w_ylo_xhi
|
|
w_yhi_xlo = self.w_yhi_xlo if w_yhi_xlo is None else w_yhi_xlo
|
|
w_yhi_xhi = self.w_yhi_xhi if w_yhi_xhi is None else w_yhi_xhi
|
|
|
|
index_bbox = self.packed_annotations.point_bbox_indices
|
|
z_est_sampled = (
|
|
z_est[index_bbox, slice_fine_segm, self.y_lo, self.x_lo] * w_ylo_xlo
|
|
+ z_est[index_bbox, slice_fine_segm, self.y_lo, self.x_hi] * w_ylo_xhi
|
|
+ z_est[index_bbox, slice_fine_segm, self.y_hi, self.x_lo] * w_yhi_xlo
|
|
+ z_est[index_bbox, slice_fine_segm, self.y_hi, self.x_hi] * w_yhi_xhi
|
|
)
|
|
return z_est_sampled
|
|
|
|
|
|
def resample_data(
|
|
z, bbox_xywh_src, bbox_xywh_dst, wout, hout, mode: str = "nearest", padding_mode: str = "zeros"
|
|
):
|
|
"""
|
|
Args:
|
|
z (:obj: `torch.Tensor`): tensor of size (N,C,H,W) with data to be
|
|
resampled
|
|
bbox_xywh_src (:obj: `torch.Tensor`): tensor of size (N,4) containing
|
|
source bounding boxes in format XYWH
|
|
bbox_xywh_dst (:obj: `torch.Tensor`): tensor of size (N,4) containing
|
|
destination bounding boxes in format XYWH
|
|
Return:
|
|
zresampled (:obj: `torch.Tensor`): tensor of size (N, C, Hout, Wout)
|
|
with resampled values of z, where D is the discretization size
|
|
"""
|
|
n = bbox_xywh_src.size(0)
|
|
assert n == bbox_xywh_dst.size(0), (
|
|
"The number of "
|
|
"source ROIs for resampling ({}) should be equal to the number "
|
|
"of destination ROIs ({})".format(bbox_xywh_src.size(0), bbox_xywh_dst.size(0))
|
|
)
|
|
x0src, y0src, wsrc, hsrc = bbox_xywh_src.unbind(dim=1)
|
|
x0dst, y0dst, wdst, hdst = bbox_xywh_dst.unbind(dim=1)
|
|
x0dst_norm = 2 * (x0dst - x0src) / wsrc - 1
|
|
y0dst_norm = 2 * (y0dst - y0src) / hsrc - 1
|
|
x1dst_norm = 2 * (x0dst + wdst - x0src) / wsrc - 1
|
|
y1dst_norm = 2 * (y0dst + hdst - y0src) / hsrc - 1
|
|
grid_w = torch.arange(wout, device=z.device, dtype=torch.float) / wout
|
|
grid_h = torch.arange(hout, device=z.device, dtype=torch.float) / hout
|
|
grid_w_expanded = grid_w[None, None, :].expand(n, hout, wout)
|
|
grid_h_expanded = grid_h[None, :, None].expand(n, hout, wout)
|
|
dx_expanded = (x1dst_norm - x0dst_norm)[:, None, None].expand(n, hout, wout)
|
|
dy_expanded = (y1dst_norm - y0dst_norm)[:, None, None].expand(n, hout, wout)
|
|
x0_expanded = x0dst_norm[:, None, None].expand(n, hout, wout)
|
|
y0_expanded = y0dst_norm[:, None, None].expand(n, hout, wout)
|
|
grid_x = grid_w_expanded * dx_expanded + x0_expanded
|
|
grid_y = grid_h_expanded * dy_expanded + y0_expanded
|
|
grid = torch.stack((grid_x, grid_y), dim=3)
|
|
|
|
zresampled = F.grid_sample(z, grid, mode=mode, padding_mode=padding_mode, align_corners=True)
|
|
return zresampled
|
|
|
|
|
|
class AnnotationsAccumulator(ABC):
|
|
"""
|
|
Abstract class for an accumulator for annotations that can produce
|
|
dense annotations packed into tensors.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def accumulate(self, instances_one_image: Instances):
|
|
"""
|
|
Accumulate instances data for one image
|
|
|
|
Args:
|
|
instances_one_image (Instances): instances data to accumulate
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def pack(self) -> Any:
|
|
"""
|
|
Pack data into tensors
|
|
"""
|
|
pass
|
|
|
|
|
|
@dataclass
|
|
class PackedChartBasedAnnotations:
|
|
"""
|
|
Packed annotations for chart-based model training. The following attributes
|
|
are defined:
|
|
- fine_segm_labels_gt (tensor [K] of `int64`): GT fine segmentation point labels
|
|
- x_gt (tensor [K] of `float32`): GT normalized X point coordinates
|
|
- y_gt (tensor [K] of `float32`): GT normalized Y point coordinates
|
|
- u_gt (tensor [K] of `float32`): GT point U values
|
|
- v_gt (tensor [K] of `float32`): GT point V values
|
|
- coarse_segm_gt (tensor [N, S, S] of `float32`): GT segmentation for bounding boxes
|
|
- bbox_xywh_gt (tensor [N, 4] of `float32`): selected GT bounding boxes in
|
|
XYWH format
|
|
- bbox_xywh_est (tensor [N, 4] of `float32`): selected matching estimated
|
|
bounding boxes in XYWH format
|
|
- point_bbox_with_dp_indices (tensor [K] of `int64`): indices of bounding boxes
|
|
with DensePose annotations that correspond to the point data
|
|
- point_bbox_indices (tensor [K] of `int64`): indices of bounding boxes
|
|
(not necessarily the selected ones with DensePose data) that correspond
|
|
to the point data
|
|
- bbox_indices (tensor [N] of `int64`): global indices of selected bounding
|
|
boxes with DensePose annotations; these indices could be used to access
|
|
features that are computed for all bounding boxes, not only the ones with
|
|
DensePose annotations.
|
|
Here K is the total number of points and N is the total number of instances
|
|
with DensePose annotations.
|
|
"""
|
|
|
|
fine_segm_labels_gt: torch.Tensor
|
|
x_gt: torch.Tensor
|
|
y_gt: torch.Tensor
|
|
u_gt: torch.Tensor
|
|
v_gt: torch.Tensor
|
|
coarse_segm_gt: Optional[torch.Tensor]
|
|
bbox_xywh_gt: torch.Tensor
|
|
bbox_xywh_est: torch.Tensor
|
|
point_bbox_with_dp_indices: torch.Tensor
|
|
point_bbox_indices: torch.Tensor
|
|
bbox_indices: torch.Tensor
|
|
|
|
|
|
class ChartBasedAnnotationsAccumulator(AnnotationsAccumulator):
|
|
"""
|
|
Accumulates annotations by batches that correspond to objects detected on
|
|
individual images. Can pack them together into single tensors.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.i_gt = []
|
|
self.x_gt = []
|
|
self.y_gt = []
|
|
self.u_gt = []
|
|
self.v_gt = []
|
|
self.s_gt = []
|
|
self.bbox_xywh_gt = []
|
|
self.bbox_xywh_est = []
|
|
self.point_bbox_with_dp_indices = []
|
|
self.point_bbox_indices = []
|
|
self.bbox_indices = []
|
|
self.nxt_bbox_with_dp_index = 0
|
|
self.nxt_bbox_index = 0
|
|
|
|
def accumulate(self, instances_one_image: Instances):
|
|
"""
|
|
Accumulate instances data for one image
|
|
|
|
Args:
|
|
instances_one_image (Instances): instances data to accumulate
|
|
"""
|
|
boxes_xywh_est = BoxMode.convert(
|
|
instances_one_image.proposal_boxes.tensor.clone(), BoxMode.XYXY_ABS, BoxMode.XYWH_ABS
|
|
)
|
|
boxes_xywh_gt = BoxMode.convert(
|
|
instances_one_image.gt_boxes.tensor.clone(), BoxMode.XYXY_ABS, BoxMode.XYWH_ABS
|
|
)
|
|
n_matches = len(boxes_xywh_gt)
|
|
assert n_matches == len(
|
|
boxes_xywh_est
|
|
), f"Got {len(boxes_xywh_est)} proposal boxes and {len(boxes_xywh_gt)} GT boxes"
|
|
if not n_matches:
|
|
|
|
return
|
|
if (
|
|
not hasattr(instances_one_image, "gt_densepose")
|
|
or instances_one_image.gt_densepose is None
|
|
):
|
|
|
|
self.nxt_bbox_index += n_matches
|
|
return
|
|
for box_xywh_est, box_xywh_gt, dp_gt in zip(
|
|
boxes_xywh_est, boxes_xywh_gt, instances_one_image.gt_densepose
|
|
):
|
|
if (dp_gt is not None) and (len(dp_gt.x) > 0):
|
|
|
|
|
|
self._do_accumulate(box_xywh_gt, box_xywh_est, dp_gt)
|
|
self.nxt_bbox_index += 1
|
|
|
|
def _do_accumulate(
|
|
self, box_xywh_gt: torch.Tensor, box_xywh_est: torch.Tensor, dp_gt: DensePoseDataRelative
|
|
):
|
|
"""
|
|
Accumulate instances data for one image, given that the data is not empty
|
|
|
|
Args:
|
|
box_xywh_gt (tensor): GT bounding box
|
|
box_xywh_est (tensor): estimated bounding box
|
|
dp_gt (DensePoseDataRelative): GT densepose data
|
|
"""
|
|
self.i_gt.append(dp_gt.i)
|
|
self.x_gt.append(dp_gt.x)
|
|
self.y_gt.append(dp_gt.y)
|
|
self.u_gt.append(dp_gt.u)
|
|
self.v_gt.append(dp_gt.v)
|
|
if hasattr(dp_gt, "segm"):
|
|
self.s_gt.append(dp_gt.segm.unsqueeze(0))
|
|
self.bbox_xywh_gt.append(box_xywh_gt.view(-1, 4))
|
|
self.bbox_xywh_est.append(box_xywh_est.view(-1, 4))
|
|
self.point_bbox_with_dp_indices.append(
|
|
torch.full_like(dp_gt.i, self.nxt_bbox_with_dp_index)
|
|
)
|
|
self.point_bbox_indices.append(torch.full_like(dp_gt.i, self.nxt_bbox_index))
|
|
self.bbox_indices.append(self.nxt_bbox_index)
|
|
self.nxt_bbox_with_dp_index += 1
|
|
|
|
def pack(self) -> Optional[PackedChartBasedAnnotations]:
|
|
"""
|
|
Pack data into tensors
|
|
"""
|
|
if not len(self.i_gt):
|
|
|
|
|
|
|
|
|
|
|
|
return None
|
|
return PackedChartBasedAnnotations(
|
|
fine_segm_labels_gt=torch.cat(self.i_gt, 0).long(),
|
|
x_gt=torch.cat(self.x_gt, 0),
|
|
y_gt=torch.cat(self.y_gt, 0),
|
|
u_gt=torch.cat(self.u_gt, 0),
|
|
v_gt=torch.cat(self.v_gt, 0),
|
|
|
|
coarse_segm_gt=(
|
|
torch.cat(self.s_gt, 0) if len(self.s_gt) == len(self.bbox_xywh_gt) else None
|
|
),
|
|
bbox_xywh_gt=torch.cat(self.bbox_xywh_gt, 0),
|
|
bbox_xywh_est=torch.cat(self.bbox_xywh_est, 0),
|
|
point_bbox_with_dp_indices=torch.cat(self.point_bbox_with_dp_indices, 0).long(),
|
|
point_bbox_indices=torch.cat(self.point_bbox_indices, 0).long(),
|
|
bbox_indices=torch.as_tensor(
|
|
self.bbox_indices, dtype=torch.long, device=self.x_gt[0].device
|
|
).long(),
|
|
)
|
|
|
|
|
|
def extract_packed_annotations_from_matches(
|
|
proposals_with_targets: List[Instances], accumulator: AnnotationsAccumulator
|
|
) -> Any:
|
|
for proposals_targets_per_image in proposals_with_targets:
|
|
accumulator.accumulate(proposals_targets_per_image)
|
|
return accumulator.pack()
|
|
|
|
|
|
def sample_random_indices(
|
|
n_indices: int, n_samples: int, device: Optional[torch.device] = None
|
|
) -> Optional[torch.Tensor]:
|
|
"""
|
|
Samples `n_samples` random indices from range `[0..n_indices - 1]`.
|
|
If `n_indices` is smaller than `n_samples`, returns `None` meaning that all indices
|
|
are selected.
|
|
Args:
|
|
n_indices (int): total number of indices
|
|
n_samples (int): number of indices to sample
|
|
device (torch.device): the desired device of returned tensor
|
|
Return:
|
|
Tensor of selected vertex indices, or `None`, if all vertices are selected
|
|
"""
|
|
if (n_samples <= 0) or (n_indices <= n_samples):
|
|
return None
|
|
indices = torch.randperm(n_indices, device=device)[:n_samples]
|
|
return indices
|
|
|