|
|
|
|
|
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Any, Optional
|
|
import torch
|
|
|
|
from detectron2.structures import BoxMode, Instances
|
|
|
|
from .utils import AnnotationsAccumulator
|
|
|
|
|
|
@dataclass
|
|
class PackedCseAnnotations:
|
|
x_gt: torch.Tensor
|
|
y_gt: torch.Tensor
|
|
coarse_segm_gt: Optional[torch.Tensor]
|
|
vertex_mesh_ids_gt: torch.Tensor
|
|
vertex_ids_gt: torch.Tensor
|
|
bbox_xywh_gt: torch.Tensor
|
|
bbox_xywh_est: torch.Tensor
|
|
point_bbox_with_dp_indices: torch.Tensor
|
|
point_bbox_indices: torch.Tensor
|
|
bbox_indices: torch.Tensor
|
|
|
|
|
|
class CseAnnotationsAccumulator(AnnotationsAccumulator):
|
|
"""
|
|
Accumulates annotations by batches that correspond to objects detected on
|
|
individual images. Can pack them together into single tensors.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.x_gt = []
|
|
self.y_gt = []
|
|
self.s_gt = []
|
|
self.vertex_mesh_ids_gt = []
|
|
self.vertex_ids_gt = []
|
|
self.bbox_xywh_gt = []
|
|
self.bbox_xywh_est = []
|
|
self.point_bbox_with_dp_indices = []
|
|
self.point_bbox_indices = []
|
|
self.bbox_indices = []
|
|
self.nxt_bbox_with_dp_index = 0
|
|
self.nxt_bbox_index = 0
|
|
|
|
def accumulate(self, instances_one_image: Instances):
|
|
"""
|
|
Accumulate instances data for one image
|
|
|
|
Args:
|
|
instances_one_image (Instances): instances data to accumulate
|
|
"""
|
|
boxes_xywh_est = BoxMode.convert(
|
|
instances_one_image.proposal_boxes.tensor.clone(), BoxMode.XYXY_ABS, BoxMode.XYWH_ABS
|
|
)
|
|
boxes_xywh_gt = BoxMode.convert(
|
|
instances_one_image.gt_boxes.tensor.clone(), BoxMode.XYXY_ABS, BoxMode.XYWH_ABS
|
|
)
|
|
n_matches = len(boxes_xywh_gt)
|
|
assert n_matches == len(
|
|
boxes_xywh_est
|
|
), f"Got {len(boxes_xywh_est)} proposal boxes and {len(boxes_xywh_gt)} GT boxes"
|
|
if not n_matches:
|
|
|
|
return
|
|
if (
|
|
not hasattr(instances_one_image, "gt_densepose")
|
|
or instances_one_image.gt_densepose is None
|
|
):
|
|
|
|
self.nxt_bbox_index += n_matches
|
|
return
|
|
for box_xywh_est, box_xywh_gt, dp_gt in zip(
|
|
boxes_xywh_est, boxes_xywh_gt, instances_one_image.gt_densepose
|
|
):
|
|
if (dp_gt is not None) and (len(dp_gt.x) > 0):
|
|
|
|
|
|
self._do_accumulate(box_xywh_gt, box_xywh_est, dp_gt)
|
|
self.nxt_bbox_index += 1
|
|
|
|
def _do_accumulate(self, box_xywh_gt: torch.Tensor, box_xywh_est: torch.Tensor, dp_gt: Any):
|
|
"""
|
|
Accumulate instances data for one image, given that the data is not empty
|
|
|
|
Args:
|
|
box_xywh_gt (tensor): GT bounding box
|
|
box_xywh_est (tensor): estimated bounding box
|
|
dp_gt: GT densepose data with the following attributes:
|
|
- x: normalized X coordinates
|
|
- y: normalized Y coordinates
|
|
- segm: tensor of size [S, S] with coarse segmentation
|
|
-
|
|
"""
|
|
self.x_gt.append(dp_gt.x)
|
|
self.y_gt.append(dp_gt.y)
|
|
if hasattr(dp_gt, "segm"):
|
|
self.s_gt.append(dp_gt.segm.unsqueeze(0))
|
|
self.vertex_ids_gt.append(dp_gt.vertex_ids)
|
|
self.vertex_mesh_ids_gt.append(torch.full_like(dp_gt.vertex_ids, dp_gt.mesh_id))
|
|
self.bbox_xywh_gt.append(box_xywh_gt.view(-1, 4))
|
|
self.bbox_xywh_est.append(box_xywh_est.view(-1, 4))
|
|
self.point_bbox_with_dp_indices.append(
|
|
torch.full_like(dp_gt.vertex_ids, self.nxt_bbox_with_dp_index)
|
|
)
|
|
self.point_bbox_indices.append(torch.full_like(dp_gt.vertex_ids, self.nxt_bbox_index))
|
|
self.bbox_indices.append(self.nxt_bbox_index)
|
|
self.nxt_bbox_with_dp_index += 1
|
|
|
|
def pack(self) -> Optional[PackedCseAnnotations]:
|
|
"""
|
|
Pack data into tensors
|
|
"""
|
|
if not len(self.x_gt):
|
|
|
|
|
|
|
|
|
|
|
|
return None
|
|
return PackedCseAnnotations(
|
|
x_gt=torch.cat(self.x_gt, 0),
|
|
y_gt=torch.cat(self.y_gt, 0),
|
|
vertex_mesh_ids_gt=torch.cat(self.vertex_mesh_ids_gt, 0),
|
|
vertex_ids_gt=torch.cat(self.vertex_ids_gt, 0),
|
|
|
|
coarse_segm_gt=(
|
|
torch.cat(self.s_gt, 0) if len(self.s_gt) == len(self.bbox_xywh_gt) else None
|
|
),
|
|
bbox_xywh_gt=torch.cat(self.bbox_xywh_gt, 0),
|
|
bbox_xywh_est=torch.cat(self.bbox_xywh_est, 0),
|
|
point_bbox_with_dp_indices=torch.cat(self.point_bbox_with_dp_indices, 0),
|
|
point_bbox_indices=torch.cat(self.point_bbox_indices, 0),
|
|
bbox_indices=torch.as_tensor(
|
|
self.bbox_indices, dtype=torch.long, device=self.x_gt[0].device
|
|
),
|
|
)
|
|
|