|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import, division, print_function
|
|
import logging
|
|
import torch.nn as nn
|
|
|
|
from detectron2.layers import ShapeSpec
|
|
from detectron2.modeling.backbone import BACKBONE_REGISTRY
|
|
from detectron2.modeling.backbone.backbone import Backbone
|
|
|
|
BN_MOMENTUM = 0.1
|
|
logger = logging.getLogger(__name__)
|
|
|
|
__all__ = ["build_pose_hrnet_backbone", "PoseHigherResolutionNet"]
|
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1):
|
|
"""3x3 convolution with padding"""
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
|
super(BasicBlock, self).__init__()
|
|
self.conv1 = conv3x3(inplanes, planes, stride)
|
|
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.conv2 = conv3x3(planes, planes)
|
|
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
expansion = 4
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
|
super(Bottleneck, self).__init__()
|
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
|
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
|
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion, momentum=BN_MOMENTUM)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv3(out)
|
|
out = self.bn3(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class HighResolutionModule(nn.Module):
|
|
"""HighResolutionModule
|
|
Building block of the PoseHigherResolutionNet (see lower)
|
|
arXiv: https://arxiv.org/abs/1908.10357
|
|
Args:
|
|
num_branches (int): number of branches of the modyle
|
|
blocks (str): type of block of the module
|
|
num_blocks (int): number of blocks of the module
|
|
num_inchannels (int): number of input channels of the module
|
|
num_channels (list): number of channels of each branch
|
|
multi_scale_output (bool): only used by the last module of PoseHigherResolutionNet
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_branches,
|
|
blocks,
|
|
num_blocks,
|
|
num_inchannels,
|
|
num_channels,
|
|
multi_scale_output=True,
|
|
):
|
|
super(HighResolutionModule, self).__init__()
|
|
self._check_branches(num_branches, blocks, num_blocks, num_inchannels, num_channels)
|
|
|
|
self.num_inchannels = num_inchannels
|
|
self.num_branches = num_branches
|
|
|
|
self.multi_scale_output = multi_scale_output
|
|
|
|
self.branches = self._make_branches(num_branches, blocks, num_blocks, num_channels)
|
|
self.fuse_layers = self._make_fuse_layers()
|
|
self.relu = nn.ReLU(True)
|
|
|
|
def _check_branches(self, num_branches, blocks, num_blocks, num_inchannels, num_channels):
|
|
if num_branches != len(num_blocks):
|
|
error_msg = "NUM_BRANCHES({}) <> NUM_BLOCKS({})".format(num_branches, len(num_blocks))
|
|
logger.error(error_msg)
|
|
raise ValueError(error_msg)
|
|
|
|
if num_branches != len(num_channels):
|
|
error_msg = "NUM_BRANCHES({}) <> NUM_CHANNELS({})".format(
|
|
num_branches, len(num_channels)
|
|
)
|
|
logger.error(error_msg)
|
|
raise ValueError(error_msg)
|
|
|
|
if num_branches != len(num_inchannels):
|
|
error_msg = "NUM_BRANCHES({}) <> NUM_INCHANNELS({})".format(
|
|
num_branches, len(num_inchannels)
|
|
)
|
|
logger.error(error_msg)
|
|
raise ValueError(error_msg)
|
|
|
|
def _make_one_branch(self, branch_index, block, num_blocks, num_channels, stride=1):
|
|
downsample = None
|
|
if (
|
|
stride != 1
|
|
or self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion
|
|
):
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(
|
|
self.num_inchannels[branch_index],
|
|
num_channels[branch_index] * block.expansion,
|
|
kernel_size=1,
|
|
stride=stride,
|
|
bias=False,
|
|
),
|
|
nn.BatchNorm2d(num_channels[branch_index] * block.expansion, momentum=BN_MOMENTUM),
|
|
)
|
|
|
|
layers = []
|
|
layers.append(
|
|
block(self.num_inchannels[branch_index], num_channels[branch_index], stride, downsample)
|
|
)
|
|
self.num_inchannels[branch_index] = num_channels[branch_index] * block.expansion
|
|
for _ in range(1, num_blocks[branch_index]):
|
|
layers.append(block(self.num_inchannels[branch_index], num_channels[branch_index]))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def _make_branches(self, num_branches, block, num_blocks, num_channels):
|
|
branches = []
|
|
|
|
for i in range(num_branches):
|
|
branches.append(self._make_one_branch(i, block, num_blocks, num_channels))
|
|
|
|
return nn.ModuleList(branches)
|
|
|
|
def _make_fuse_layers(self):
|
|
if self.num_branches == 1:
|
|
return None
|
|
|
|
num_branches = self.num_branches
|
|
num_inchannels = self.num_inchannels
|
|
fuse_layers = []
|
|
for i in range(num_branches if self.multi_scale_output else 1):
|
|
fuse_layer = []
|
|
for j in range(num_branches):
|
|
if j > i:
|
|
fuse_layer.append(
|
|
nn.Sequential(
|
|
nn.Conv2d(num_inchannels[j], num_inchannels[i], 1, 1, 0, bias=False),
|
|
nn.BatchNorm2d(num_inchannels[i]),
|
|
nn.Upsample(scale_factor=2 ** (j - i), mode="nearest"),
|
|
)
|
|
)
|
|
elif j == i:
|
|
fuse_layer.append(None)
|
|
else:
|
|
conv3x3s = []
|
|
for k in range(i - j):
|
|
if k == i - j - 1:
|
|
num_outchannels_conv3x3 = num_inchannels[i]
|
|
conv3x3s.append(
|
|
nn.Sequential(
|
|
nn.Conv2d(
|
|
num_inchannels[j],
|
|
num_outchannels_conv3x3,
|
|
3,
|
|
2,
|
|
1,
|
|
bias=False,
|
|
),
|
|
nn.BatchNorm2d(num_outchannels_conv3x3),
|
|
)
|
|
)
|
|
else:
|
|
num_outchannels_conv3x3 = num_inchannels[j]
|
|
conv3x3s.append(
|
|
nn.Sequential(
|
|
nn.Conv2d(
|
|
num_inchannels[j],
|
|
num_outchannels_conv3x3,
|
|
3,
|
|
2,
|
|
1,
|
|
bias=False,
|
|
),
|
|
nn.BatchNorm2d(num_outchannels_conv3x3),
|
|
nn.ReLU(True),
|
|
)
|
|
)
|
|
fuse_layer.append(nn.Sequential(*conv3x3s))
|
|
fuse_layers.append(nn.ModuleList(fuse_layer))
|
|
|
|
return nn.ModuleList(fuse_layers)
|
|
|
|
def get_num_inchannels(self):
|
|
return self.num_inchannels
|
|
|
|
def forward(self, x):
|
|
if self.num_branches == 1:
|
|
return [self.branches[0](x[0])]
|
|
|
|
for i in range(self.num_branches):
|
|
x[i] = self.branches[i](x[i])
|
|
|
|
x_fuse = []
|
|
|
|
for i in range(len(self.fuse_layers)):
|
|
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
|
|
for j in range(1, self.num_branches):
|
|
if i == j:
|
|
y = y + x[j]
|
|
else:
|
|
z = self.fuse_layers[i][j](x[j])[:, :, : y.shape[2], : y.shape[3]]
|
|
y = y + z
|
|
x_fuse.append(self.relu(y))
|
|
|
|
return x_fuse
|
|
|
|
|
|
blocks_dict = {"BASIC": BasicBlock, "BOTTLENECK": Bottleneck}
|
|
|
|
|
|
class PoseHigherResolutionNet(Backbone):
|
|
"""PoseHigherResolutionNet
|
|
Composed of several HighResolutionModule tied together with ConvNets
|
|
Adapted from the GitHub version to fit with HRFPN and the Detectron2 infrastructure
|
|
arXiv: https://arxiv.org/abs/1908.10357
|
|
"""
|
|
|
|
def __init__(self, cfg, **kwargs):
|
|
self.inplanes = cfg.MODEL.HRNET.STEM_INPLANES
|
|
super(PoseHigherResolutionNet, self).__init__()
|
|
|
|
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
|
|
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.layer1 = self._make_layer(Bottleneck, 64, 4)
|
|
|
|
self.stage2_cfg = cfg.MODEL.HRNET.STAGE2
|
|
num_channels = self.stage2_cfg.NUM_CHANNELS
|
|
block = blocks_dict[self.stage2_cfg.BLOCK]
|
|
num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))]
|
|
self.transition1 = self._make_transition_layer([256], num_channels)
|
|
self.stage2, pre_stage_channels = self._make_stage(self.stage2_cfg, num_channels)
|
|
|
|
self.stage3_cfg = cfg.MODEL.HRNET.STAGE3
|
|
num_channels = self.stage3_cfg.NUM_CHANNELS
|
|
block = blocks_dict[self.stage3_cfg.BLOCK]
|
|
num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))]
|
|
self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels)
|
|
self.stage3, pre_stage_channels = self._make_stage(self.stage3_cfg, num_channels)
|
|
|
|
self.stage4_cfg = cfg.MODEL.HRNET.STAGE4
|
|
num_channels = self.stage4_cfg.NUM_CHANNELS
|
|
block = blocks_dict[self.stage4_cfg.BLOCK]
|
|
num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))]
|
|
self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels)
|
|
self.stage4, pre_stage_channels = self._make_stage(
|
|
self.stage4_cfg, num_channels, multi_scale_output=True
|
|
)
|
|
|
|
self._out_features = []
|
|
self._out_feature_channels = {}
|
|
self._out_feature_strides = {}
|
|
|
|
for i in range(cfg.MODEL.HRNET.STAGE4.NUM_BRANCHES):
|
|
self._out_features.append("p%d" % (i + 1))
|
|
self._out_feature_channels.update(
|
|
{self._out_features[-1]: cfg.MODEL.HRNET.STAGE4.NUM_CHANNELS[i]}
|
|
)
|
|
self._out_feature_strides.update({self._out_features[-1]: 1})
|
|
|
|
def _get_deconv_cfg(self, deconv_kernel):
|
|
if deconv_kernel == 4:
|
|
padding = 1
|
|
output_padding = 0
|
|
elif deconv_kernel == 3:
|
|
padding = 1
|
|
output_padding = 1
|
|
elif deconv_kernel == 2:
|
|
padding = 0
|
|
output_padding = 0
|
|
|
|
return deconv_kernel, padding, output_padding
|
|
|
|
def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer):
|
|
num_branches_cur = len(num_channels_cur_layer)
|
|
num_branches_pre = len(num_channels_pre_layer)
|
|
|
|
transition_layers = []
|
|
for i in range(num_branches_cur):
|
|
if i < num_branches_pre:
|
|
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
|
|
transition_layers.append(
|
|
nn.Sequential(
|
|
nn.Conv2d(
|
|
num_channels_pre_layer[i],
|
|
num_channels_cur_layer[i],
|
|
3,
|
|
1,
|
|
1,
|
|
bias=False,
|
|
),
|
|
nn.BatchNorm2d(num_channels_cur_layer[i]),
|
|
nn.ReLU(inplace=True),
|
|
)
|
|
)
|
|
else:
|
|
transition_layers.append(None)
|
|
else:
|
|
conv3x3s = []
|
|
for j in range(i + 1 - num_branches_pre):
|
|
inchannels = num_channels_pre_layer[-1]
|
|
outchannels = (
|
|
num_channels_cur_layer[i] if j == i - num_branches_pre else inchannels
|
|
)
|
|
conv3x3s.append(
|
|
nn.Sequential(
|
|
nn.Conv2d(inchannels, outchannels, 3, 2, 1, bias=False),
|
|
nn.BatchNorm2d(outchannels),
|
|
nn.ReLU(inplace=True),
|
|
)
|
|
)
|
|
transition_layers.append(nn.Sequential(*conv3x3s))
|
|
|
|
return nn.ModuleList(transition_layers)
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1):
|
|
downsample = None
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(
|
|
self.inplanes,
|
|
planes * block.expansion,
|
|
kernel_size=1,
|
|
stride=stride,
|
|
bias=False,
|
|
),
|
|
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
|
|
)
|
|
|
|
layers = []
|
|
layers.append(block(self.inplanes, planes, stride, downsample))
|
|
self.inplanes = planes * block.expansion
|
|
for _ in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def _make_stage(self, layer_config, num_inchannels, multi_scale_output=True):
|
|
num_modules = layer_config["NUM_MODULES"]
|
|
num_branches = layer_config["NUM_BRANCHES"]
|
|
num_blocks = layer_config["NUM_BLOCKS"]
|
|
num_channels = layer_config["NUM_CHANNELS"]
|
|
block = blocks_dict[layer_config["BLOCK"]]
|
|
|
|
modules = []
|
|
for i in range(num_modules):
|
|
|
|
if not multi_scale_output and i == num_modules - 1:
|
|
reset_multi_scale_output = False
|
|
else:
|
|
reset_multi_scale_output = True
|
|
|
|
modules.append(
|
|
HighResolutionModule(
|
|
num_branches,
|
|
block,
|
|
num_blocks,
|
|
num_inchannels,
|
|
num_channels,
|
|
reset_multi_scale_output,
|
|
)
|
|
)
|
|
num_inchannels = modules[-1].get_num_inchannels()
|
|
|
|
return nn.Sequential(*modules), num_inchannels
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
x = self.conv2(x)
|
|
x = self.bn2(x)
|
|
x = self.relu(x)
|
|
x = self.layer1(x)
|
|
|
|
x_list = []
|
|
for i in range(self.stage2_cfg.NUM_BRANCHES):
|
|
if self.transition1[i] is not None:
|
|
x_list.append(self.transition1[i](x))
|
|
else:
|
|
x_list.append(x)
|
|
y_list = self.stage2(x_list)
|
|
|
|
x_list = []
|
|
for i in range(self.stage3_cfg.NUM_BRANCHES):
|
|
if self.transition2[i] is not None:
|
|
x_list.append(self.transition2[i](y_list[-1]))
|
|
else:
|
|
x_list.append(y_list[i])
|
|
y_list = self.stage3(x_list)
|
|
|
|
x_list = []
|
|
for i in range(self.stage4_cfg.NUM_BRANCHES):
|
|
if self.transition3[i] is not None:
|
|
x_list.append(self.transition3[i](y_list[-1]))
|
|
else:
|
|
x_list.append(y_list[i])
|
|
y_list = self.stage4(x_list)
|
|
|
|
assert len(self._out_features) == len(y_list)
|
|
return dict(zip(self._out_features, y_list))
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def build_pose_hrnet_backbone(cfg, input_shape: ShapeSpec):
|
|
model = PoseHigherResolutionNet(cfg)
|
|
return model
|
|
|