|
|
|
|
|
|
|
|
|
import pickle
|
|
import torch
|
|
from torch import nn
|
|
|
|
from detectron2.utils.file_io import PathManager
|
|
|
|
from .utils import normalize_embeddings
|
|
|
|
|
|
class VertexFeatureEmbedder(nn.Module):
|
|
"""
|
|
Class responsible for embedding vertex features. Mapping from
|
|
feature space to the embedding space is a tensor of size [K, D], where
|
|
K = number of dimensions in the feature space
|
|
D = number of dimensions in the embedding space
|
|
Vertex features is a tensor of size [N, K], where
|
|
N = number of vertices
|
|
K = number of dimensions in the feature space
|
|
Vertex embeddings are computed as F * E = tensor of size [N, D]
|
|
"""
|
|
|
|
def __init__(
|
|
self, num_vertices: int, feature_dim: int, embed_dim: int, train_features: bool = False
|
|
):
|
|
"""
|
|
Initialize embedder, set random embeddings
|
|
|
|
Args:
|
|
num_vertices (int): number of vertices to embed
|
|
feature_dim (int): number of dimensions in the feature space
|
|
embed_dim (int): number of dimensions in the embedding space
|
|
train_features (bool): determines whether vertex features should
|
|
be trained (default: False)
|
|
"""
|
|
super(VertexFeatureEmbedder, self).__init__()
|
|
if train_features:
|
|
self.features = nn.Parameter(torch.Tensor(num_vertices, feature_dim))
|
|
else:
|
|
self.register_buffer("features", torch.Tensor(num_vertices, feature_dim))
|
|
self.embeddings = nn.Parameter(torch.Tensor(feature_dim, embed_dim))
|
|
self.reset_parameters()
|
|
|
|
@torch.no_grad()
|
|
def reset_parameters(self):
|
|
self.features.zero_()
|
|
self.embeddings.zero_()
|
|
|
|
def forward(self) -> torch.Tensor:
|
|
"""
|
|
Produce vertex embeddings, a tensor of shape [N, D] where:
|
|
N = number of vertices
|
|
D = number of dimensions in the embedding space
|
|
|
|
Return:
|
|
Full vertex embeddings, a tensor of shape [N, D]
|
|
"""
|
|
return normalize_embeddings(torch.mm(self.features, self.embeddings))
|
|
|
|
@torch.no_grad()
|
|
def load(self, fpath: str):
|
|
"""
|
|
Load data from a file
|
|
|
|
Args:
|
|
fpath (str): file path to load data from
|
|
"""
|
|
with PathManager.open(fpath, "rb") as hFile:
|
|
data = pickle.load(hFile)
|
|
for name in ["features", "embeddings"]:
|
|
if name in data:
|
|
getattr(self, name).copy_(
|
|
torch.tensor(data[name]).float().to(device=getattr(self, name).device)
|
|
)
|
|
|